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ABSTRACT

One of the fundamental principles of contemporary linguistics states that language processing requires
the ability to extract recursively nested tree structures. However, it remains unclear whether and how
this code could be implemented in neural circuits. Recent advances in Recurrent Neural Networks
(RNNs), which achieve near-human performance in some language tasks, provide a compelling
model to address such questions. Here, we present a new framework to study recursive processing
in RNNs, using subject-verb agreement as a probe into the representations of the neural network.
We trained six distinct types of RNNs on a simplified probabilistic context-free grammar designed
to independently manipulate the length of a sentence and the depth of its syntactic tree. All RNNs
generalized to subject-verb dependencies longer than those seen during training. However, none
systematically generalized to deeper tree structures, even those with a structural bias towards learning
nested tree (i.e., stack-RNNs). In addition, our analyses revealed primacy and recency effects in the
generalization patterns of LSTM-based models, showing that these models tend to perform well on
the outer- and innermost parts of a center-embedded tree structure, but poorly on its middle levels.
Finally, probing the internal states of the model during the processing of sentences with nested tree
structures, we found a complex encoding of grammatical agreement information (e.g. grammatical
number), in which all the information for multiple words nouns was carried by a single unit. Taken
together, these results indicate how neural networks may extract bounded nested tree structures,
without learning a systematic recursive rule.

*These authors contributed equally to this work.
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1 Introduction

The syntactic organization of human languages has been proposed to follow a nested-tree organization [Chomsky, 1957].
Nested trees necessitate a recursive operator, i.e. repeatedly applying a function over its own results. Consequently,
recursive processing has been hypothesized to be at the core of the unique linguistic abilities of humans, possibly
unique to humans, and is yet unidentified by human electrophysiology [Hauser et al., 2002, Dehaene et al., 2015]. In
recent years, Recurrent Neural Networks (RNNs) trained on large natural-language corpora have shown tremendous
advances on a variety of NLP tasks, including word prediction (aka, language modeling) and sentence translation.
Despite substantial differences between the human brain and artificial neural networks, the remarkable performances of
modern RNNs on such tasks make them compelling objects for the study of recursive processing in neural devices akin
to the human brain [see, e.g., Christiansen and Chater, 1999, for early studies].

The notion of recursion was developed in the study of human linguistic knowledge. If a certain construction can be
generated from a given grammar by an application of a rule, then a repeated application of the same rule could generate
acceptable strings of an arbitrarily complexity. In contrast, it is empirically established that human linguistic processing
is tightly limited, due to limitations such as memory capacity or attention span. This apparent inconsistency between the
unbounded property of natural language and the tightly limited processing capacity of humans is commonly reconciled
by drawing a distinction between human linguistic competence and performance. The former refers to the theoretical
‘ideal’ knowledge of natural language, and is the object of linguistic inquiries, whereas the latter refers to the unfolding
of this knowledge through parsing processes, whose operations incur a certain ‘cost’ each. Such costs are commonly
studied in psycholinguistics in behavioral experiment by measuring human accuracy and reaction times.

In RNNs, the learned rules of the language are encoded in the network in a way that is directly related to the way the
network applies them during sentence processing. Representations of abstract linguistic knowledge (construed here as
‘network competence’), and their unfolding in time during sentence processing (‘network performance’) could possibly
be jointly studied in the network. * Here, we explore the capacity of modern RNNs to learn to represent abstract rules of
a recursive grammar. We study (1) the ‘behavioral’ performance of RNNs, by evaluating model accuracy in processing
nested structures sampled from the grammar, and (2) the inner representations learned by the model, by conducing an
in-depth analysis into the way an RNN encodes underlying grammatical knowledge.

Specifically, we focus on the capacity of RNN-based language models to learn artificial grammars with nested long-
distance feature agreements. Feature agreement is central to our study since it allows to study recursive processing in
RNNs given a linear order of words. Previous studies confirmed that RNN trained on natural data can successfully
perform challenging long-range agreement between subject and verb [Linzen et al., 2016, Bernardy and Lappin, 2017,
Gulordava et al., 2018, Lakretz et al., 2019]. However, several questions regarding recursive processing in RNNs remain
unanswered: (1) it remains unclear whether RNNs learn to perform recursive processing over their input, akin to what
argued for human language processing; (2) how do representations and mechanisms learned by RNNs affected by the
statistics of the data? For example, if during training an RNN is presented with high occurrence of nested recursive
structures (with, say, deeper constructions than those found in natural language), will it favor developing recursive
mechanisms? (3) Can a structural bias towards learning recursive grammars (e.g., memory-augmented models) improve
RNN performance on nested constructions?

To address the above questions, we introduce a setup that is simple enough to control for various aspects of the training
data, which are otherwise hard to explore in a natural-data setup, while preserving a higher degree of similarity to
natural data compared to previous studies on simple artificial languages. We test and compare the performance of a
variety of RNN models, with and without structural bias. We found that RNNs do not genuinely capture the underlying
recursive grammar and do not truly generalize to deeper structures, importantly, neither RNNs with a structural bias
towards learning hierarchical data. However, RNNs do succeed in generalizing to longer subject-verb dependencies for a
given depth. An analysis of the generalization patterns of the networks revealed primacy and recency effects, consistent
with recent findings on the distinction between short- and long-range number units identified in RNN language models
Lakretz et al. [2019]; Finally, we describe the dynamics of the inner states of one such long-range unit and its complex
encoding of multiple grammatical numbers.

2 Related Literature

Our work is closely related to the line of research started in the influential work by Linzen et al. [2016]. Since then,
grammatical long-distance agreement has become a standard way to probe the syntactic capabilities of RNN language
models [Bernardy and Lappin, 2017, Gulordava et al., 2018, Lakretz et al., 2019], and was extended to other related

*See, however, Christiansen [1992], which argue for the rejection of the competence-performance distinction in humans and
RNNs.
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phenomena [Jumelet and Hupkes, 2018, Futrell et al., 2018, Marvin and Linzen, 2018, Wilcox et al., 2019] and to other
types of neural models [e.g., Goldberg, 2019].

Studying syntax processing with natural language incurs difficulties arising from various correlations between syntactic
and semantic information. In contrast, artificial languages provide a framework for studying the purely syntactic abilities
of RNNs while carefully controlling for various parameters of the data. Starting with the classic work on Simple
Recurrent Networks (SRN) in Elman [1991], studies explored the ability of RNNs to learn simple grammars. Initially,
moving from regular to context-free grammars (CFGs), difficulties have been reported in learning such languages with
SRNs [Bodén et al., 1999, Bodén and Wiles, 2000, e.g.,]. Later, Long-Short Term Memory (LSTM) networks have
been found to better capture simple context-free and context-sensitive counter languages, such as anbn and anbncn,
showing robust generalization to longer sequences (Gers and Schmidhuber, 2001, Rodriguez, 2001; see also, Weiss
et al., 2018, Suzgun et al., 2018).

More recently, LSTM networks were evaluated on their capacity to capture Dyck languages.* Dyck-1 was found to
be well captured by LSTM networks [Bernardy, 2018], in particular, Suzgun et al. [2019a] showed that a single-layer
LSTM with a single hidden unit suffices to recognize the language. More recently, Suzgun et al. [2019b] have shown
that memory-augmented RNN models can capture generalized Dyck languages, including the Dyck-2 language, with
close to perfect out-of-sample performance. Other related work studied the generalization patterns of seq2seq models in
a synthetic language setup [Lake and Baroni, 2018], pointing out failures of all models to generalize in a systematic
way to unseen data [see also, Hupkes et al., 2018, 2019]

3 Models

We contrasted two families of models - with and without a structural bias:

3.1 Standard RNNs

We explored three standard RNN units: (1) Simple Recurrent Networks (SRNs), introduced by Elman [1991], (2)
Short-Term Memory (LSTM) models [Hochreiter and Schmidhuber, 1997], which were previously shown to perform
well on number-agreement tasks when trained on a natural-language corpus, and (3) Gated Recurrent Unit (GRU) [Cho
et al., 2014]. In contrast to LSTM units, GRUs merge the two state variables h and C into a single one, which makes
the handling of interference materials less explicit (but possible). The coupling of the input and output gate was shown
to prevent the network from developing counting mechanisms to recognize simple context-free grammars [Weiss et al.,
2018].

3.2 RNNs with a structural bias

Ordered-Neurons LSTMs (ON-LSTMs) Based on the intuition that larger constituents contain information that
changes more slowly across the sentence, Shen et al. [2018] suggested a variant of LSTMs, called Ordered-Neurons
LSTMs, which imposes a hierarchical bias on the cell-updating mechanism. Given the hierarchical nature of our data,
we expected ON-LSTMs to perform well on the number-agreements tasks. In our experiments, we used the publicly
available code.*

Stack-RNNs and Stack-LSTMs Stack-RNNs are memory augmented RNNs, which learn to perform a sequence of
’soft’ pop and push actions on a stack-like array [Joulin and Mikolov, 2015]. Stack-LSTMs are a variant of Stack-RNNs,
with a modified update of the hidden state: ht = LSTM(xt, h̃t−1) [see, e.g., Suzgun et al., 2019b]. Given the high
performance of these models on counter languages and Dyck-2, we tested the performance of these models on our
agreement tasks, using the code provided by the authors*.

*A Dyck-n language consists of strings with balanced pairs of n different types of brackets. For example, ”[{}]{{[]}}” is an
admissible sequence of a Dyck-2 language. Dyck languages are both simple and expressive enough to represent all CFGs [Chomsky
and Schützenberger, 1959] (in particular the Dyck-2 language suffices [Suzgun et al., 2019a]).

*https://github.com/yikangshen/Ordered-Neurons. We made a single modification - we replaced the loss criterion in the code by a
standard cross-entropy loss, which is more appropriate for our simple setup.

*https://github.com/suzgunmirac/marnns. To have a tighter comparison with the other models, we made the following two
modifications: (1) since we trained all models with a language modelling objective (section 4), we added a softmax layer to the
output layer, and (2) we added an embedding layer between the input and first layer of the model, and between the last layer and the
softmax.
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Figure 1: An example for a sentence sampled from the pCFG in (1).

4 Experimental Setup

We trained all our models with a language-modelling objective and tested them on a number prediction task [Linzen
et al., 2016, Gulordava et al., 2018, Futrell et al., 2018]. To explore the effect of the statistics and properties of the data
on the resulting dynamics of the model, we generated training datasets with different characteristics. We did so by
sampling from a pCFG with two parameters that separately control the mean tree depth and dependency lengths in the
data. The models were then tested on well-controlled number-agreement tasks, which allow us to probe subject-verb
number agreement in controlled and increasingly challenging way.

The Grammar The training sets were sampled from the following center-embedding probabilistic CFG with feature
agreement:

S→ NP VP {1− p1} | NP S VP {p1}
NP→ N {1− p2} | A NP {p2}
VP→ V {1− p2} | A VP {p2}

N→ n1 {0.2} | n2 {0.2} | ... | n5 {0.2}
V→ v1 {0.2} | v2 {0.2} | ... | v5 {0.2}
A→ a1 {0.2} | a2 {0.2} | ... | a5 {0.2}

(1)

where, S, NP and V P represent start, noun-phrase and verb-phrase-like non-terminals. In curly brackets, p1 and p2
are the generation probabilities of a center-embedded clause and adjective-like preceding non-terminal, respectively. ni

and vi are noun- and verb-like terminal tokens that carry grammatical number, and ai are adjective-like terminal tokens
that do not carry number. Finally, N , V and A are their corresponding part-of-speech (noun, verb and adjective). We
highlight in bold feature agreement between the left-hand and right-hand side of each production; in this simplified
CFG, there is no agreement for adjectives, and therefore A and ai variables are not in bold. The addition of A tokens
to the grammar is crucial since it allows to increase sentence length (by changing p2) without changing depth (which
is only affected by p1). Figure 1 shows an example of a training sample and its corresponding tree. Note that the
numbering i of the various tokens ni, vi and ai is not related to the depth of the token.

Training datasets We generated different training datasets by sampling from the grammar with various combinations
of generation probabilities: p1, p2 ∈ {0.1, 0.3, 0.5}. This resulted in nine training sets, and we set the number of tokens
in each to 1M. To control for the maximal length and depth of sentences presented to the models, we truncated the tail
of these distributions by clipping the maximal values to its 95th percentile. In what follows, we refer to each training
set by Dtrain

p1,p2
.

Validation Datasets Validation datasets were generated in the same way with 100K each. We tuned the following
hyperparameters: number of layers, hidden units per layer, embedding size and dropout. In what follows, we refer to
the optimal model from each training set as Mp1,p2

.

Test Datasets Similarly, for model comparison, for each probability pair, we generated a test set with 200K tokens.

4
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Figure 2: Average accuracy across all verbs and sentences in the number-agreement tasks. Each matrix corresponds to
one of the nine LSTM models Mp1,p2

. Each pixel corresponds to accuracy on a specific NA-task of a given depth and
spacing (d, s). The maximal accuracy is one, which corresponds to the case in which the model predicted the right
grammatical number of all verb-like tokens in all 1K sentences. Dashed horizontal and vertical black lines represent the
maximal training depth and spacing.

Number-Agreement Tasks (NA-tasks) We tested the performance of the models on fixed-length NA-tasks of
increasing difficulty. Each NA-task is composed of d nested dependencies and a fixed spacing s, which is the number of
successive adjective-like tokens between any two number-carrying tokens (noun or verb-like tokens). For example,
for d = 3, s = 2, one of the samples is: ’a2 a1 n3[sg] a5 a3 n1[pl] a2 a2 v5[pl] a4 a1 v[sg] a2 a5’, where number-
carrying tokens are in bold. Note that noun- and verb-like tokens at each depth agree on their number. Note also
that each sentence is padded with an affix of s = 2 successive adjective-like tokens on both sides. For each pair of
d ∈ (1, 2, ..., 10) and s ∈ (1, 2, 3, ..., 16, 32), we generated 1K sentences, resulting in a total of 170 test datasets.

Model Evaluation For hyperparamter tuning and model comparison, we used perplexity to evaluate the performance
of the models on the validation set. For model evaluation, we tested model performance on the NA-tasks: similarly
to Linzen et al. [2016], for each task, we presented the sentences sequentially, one word at a time, and compared the
prediction of the model to the correct grammatical number one step before each verb in the sentence. Accuracy in a
given NA-task was measured as the proportion of sentences for which the model assigned a higher likelihood to the
correct verb form.

5 Experiments

We start by studying the LSTM model and then extend our analyses to all other models (section 5.4). The experiments
in this section provide the following observations:

• LSTMs do not generalize to deeper structures, but do generalize to longer dependencies (5.1).
• LSTMs show recency and primacy effects in their generalization patterns (5.2).
• A small set of units explains most of the dynamics of the LSTM when performing the agreement task (5.3).
• All other RNN models fail to generalize to deeper structures, but do succeed to generalize to longer sequences.

Recency and primacy effects were found also in models with a structural bias (5.4).

5.1 Generalization of Standard LSTMs

We trained the models as described in section 4, which resulted in nine models Mp1,p2 for the nine training datasets. We
then evaluated the models on each of the NA-tasks. Figure 2 describes the resulting accuracies for all LSTM models.
We first note that models that were trained on deeper datasets (larger p1) achieve better performance on sentences
with greater depth. Similarly, models trained on longer datasets (larger p2) better perform with respect to spacing.

5
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Figure 3: Accuracy per verb for the nine models on NA-tasks with spacing equals to two (s = 2). Verb position is
with respect to counting from the inner- to outermost verb in the center-embedding structure. Dashed horizontal lines
correspond to the maximal training depth.

Second, we note that the performance of all models is relatively low for a set of d and s values that remain below their
maximal training values. This highlights the importance of a careful evaluation of model performance that probes
the structural representations captured by the model, rather than performance evaluation based on perplexity alone
[see e.g., Suzgun et al., 2018, Goldberg, 2019]. Third, model performance shows an interaction between depth and
spacing - for larger values of d, the accuracy of the models decreases faster with spacing. This is expected due to
increased interference among the multiple grammatical numbers that need to be carried over time for nested long-range
dependencies. Fourth, for d = 1, most models generalize beyond the max-training spacing, in particular, M0.5,0.5

generalize from max-training spacing of 16 to 32. Finally, we note that the generalization of all models to deeper
structures is qualitatively poor, with above-chance performance only in some cases. As we will show next, also in these
cases, the models do not truly generalize to deeper structure, but rather perform well on only the same number of verbs
encountered during training.

Verb position
1 2 3 4 5

Depth S P S P S P S P S P
1 - -
2 - - 23 -
3 - - 23 - 23 -
4 - - - - 23 - 4,23 -
5 - - - - 23 12 4,23,26 5,6,7 23 5,7

Table 1: Results from the ablation study: numbers in cells represent units whose ablation brings the performance of the
network to close or below chance level (< 0.55).

5.2 Primacy and Recency effects in LSTMs

To better characterize the regularization patterns of the models, we analyzed the performance of the models on each
verb in the sentence. Figure 3 shows the accuracy of the models on the NA-tasks on each verb separately, for a fixed
spacing s = 2. We first note that in most cases the models generalize to much deeper sentences when considering the
first verb only, or the first few verbs (i.e. the innermost ones in the center-embedded structure). This is compatible with
the emergence of two types of number units in the network: short and long-range units [Lakretz et al., 2019]. In this
study, it was found that many short-range units encode and carry grammatical number for several time steps if there is

6
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(a) A single dependency (d = 1, s = 2). (b) Two dependencies (d = 2, s = 2).

(c) Three dependencies (d = 3, s = 2). (d) Two dependency with long spacing (d = 2, s = 12)

(e) PCA analysis of the hidden states. Left: first PC, Right: second PC.

Figure 4: Internal dynamics of unit 23 from M0.5,0.5. Lines represent average values across all sentences in the NA task.
We use line color, style and weight to encode the number of each noun: red and blue colors represent that the first noun
is either singular or plural, respectively; continuous and dashed lines represent that the second noun is either singular
or plural, respectively; thick and thin lines represent that the third nouns is either singular or plural, respectively. In
(e), 1st, 2nd and 3rd shaded areas highlight the time steps before verb prediction, in which the trajectories for the first
grammatical number (line widths), second (line styles) and third (colors) are separated.

no interference from an opposite grammatical number in the input, whereas long-range units are few but can robustly
carry the grammatical number across possible interference. We refer to this as the recency effect, which suggests that
the model can encode the last encountered noun(s). Next, we note that M(0.5, 0.5) performs well on the last verb for
d > 5, although its performance is poor on the middle verbs. We refer to this effect as ’primacy’ effect, which suggests
that the model encodes the first noun in the sentence for long-range dependencies. To test the robustness of this effect,
we analyzed other models, including a model that was trained on higher statistics and other models from the grid-search
with similar hyperparameters. All showed the same effect. In sum, LSTM models show primacy and recency effects,
but no satisfactory generalization to deep center-embedded structures.

5.3 Single-unit Dynamics during Sentence Processing

To identify units in the network that encode grammatical number for long-range dependencies, we ran an ablation
study on M0.5,0.5. We successively ablated each individual unit and evaluated the ablated model on NA-tasks with
d ∈ (1, 2, 3, 4, 5) and s = 2, as in the previous section, analyzing the performance on each verb separately. To further
understand the encoding of singular vs. plural in each noun position, we split the sentences in the NA-task with respect
to whether the noun was plural or singular before evaluating the ablation effect. Table 1 summarizes the results. We
first note that none of the units caused a dramatic reduction in performance on the inner-most verb (verb 1) when
ablated. This recency effect is again consistent with the existence of multiple short-range units that encode the last
grammatical number in a distributed and redundant way. Second, ablating unit 23 consistently reduced the performance
of the network across several depths and verb positions when the noun was singular. As for plural, we found that only
for d = 5 were there units that could dramatically impair the performance of the network, although we found that for
smaller depths the performance was significantly impaired by the same units as for d = 5, but not as much as lowering
to around chance level.

7
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The ablation study suggests that unit 23 has a key role in performing the NA task. To understand the encoding strategy
of this unit, we analyzed its dynamics during the processing of sentences from the NA-tasks. Figure 4a-4c shows the
hidden state dynamics during the processing of sentences from the NA-task with s = 2 for depths one to three. For
d = 1, unit 23 separately encodes the grammatical number of the noun (red vs. blue) throughout the subject-verb
dependency. For d = 2, the unit separately encodes the number of the first noun (red vs. blue) one step before it is
required to be predicted, before the outer verb, and separately encodes the number of the second noun (continuous
vs. dashed lines) one step before the inner verb should be predicted. Similarly, for d = 3, the two line colors are
distinguishable before the outer verb, the two lines styles before the middle one, and the two line weights (thick vs.
thin) are distinguishable before the innermost one. These dynamics are consistent with the results of the ablation study,
which shows that unit 23 has a dramatic effect on network performance both on the outer and the middle verb in d = 3.
Finally, we explore the dynamics of unit 23 when it fails to perform the NA-task. Figure 4d shows its dynamics on
the NA-task with (d, s) = (2, 12). In contrast to s = 2 above, larger spacing prevents the network from encoding the
number of the first nouns for long-range dependencies (blue and red lines are not well separated previous to one step
before the outer verb). In sum, this analysis shows that complex encoding of three successive nouns can be carried out
by a single unit in the network.

To visualize the dynamics of also the entire network during the processing of deep nested dependencies, we calculated
the first two principal components (PCs) of the state space of the network at each time step. Figure 4e shows the results
for the PCA of the hidden states of the network during the NA-task with (d, s) = (3, 2). We found a similar encoding
dynamics to that used by unit 23, with both PCs showing separated trajectories for the different grammatical numbers
before each verb prediction, showing that the network follows a similar encoding scheme. Finally, we note that both
the PCA and dynamics of unit 23 show a ’fractal-like’ encoding, in which information about all previous features is
simultaneously stored at different scales. To exemplify this, note that after the third noun (first shaded area in PC2),
information about the previous two nouns is preserved at smaller scales: the number of the first noun is encoded with
higher values for singular compared to plural (red lines are consistently above the blue), and similarly for the number
of the second noun (dashed lines are above the continuous). Such a fractal, multiscale activity pattern may provide a
general solution to the neural implementation of a memory stack and the associated push and pop operations.

5.4 Model Comparison

Figure 5: Average accuracy across all verbs and sentences in each NA-task, for all models when trained on Dtrain
0.5,0.5.

Next, we evaluated all other types of RNNs in the same way we did for the LSTM. We first found that, overall, memory-
augmented models achieved the best perplexity - all other models had comparable performance. We next evaluated
all models on the NA-tasks: Figure 5 shows the average accuracies on all NA-tasks for all types of models trained
on Dtrain

0.5,0.5. We first note that stack-LSTMs show better overall performance also on the NA-tasks, achieving perfect
performance on almost all depths and spacing values within the max limits of the training set, and showing generalization
to longer dependencies for all depths d < 4. However, we note that none of the models genuinely generalized to deeper
structures, as can be also observed in the generalization patterns of the models (see SM). Interestingly, we found that all
models with a structural bias (ON-LSTMs, Stack-RNNs and Stack-LSTMs) showed recency and primacy effects in
their generalization patterns, similarly to LSTMs. This suggests that this property is common to many RNN models.

8
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6 Summary and Discussion

We presented a new framework for studying the ability of neural language models to learn recursively nested long-
range dependencies. We made use of two independent control parameters of a center-embedding pCFG to decouple
generalization patterns to deeper structures from those to longer dependencies. Our framework thus diverges from
previous work [Christiansen and Chater, 1999, 2001, Suzgun et al., 2019b] by studying long-range dependencies in a
more naturalistic setup, with a richer vocabulary, syntactic features defined over multiple tokens, models that are trained
with a language-modeling objective and with a focus on subject-verb agreement.

Comparing performance of various RNN models, we found that none of the models truly captured the underlying
recursive regularity. In particular, structured models - ON-LSTMs, stack-RNNs and stack-LSTMs - were found to be
comparable, or only superficially better, than standard RNNs and did not genuinely generalize to deeper structures.
While stack-RNNs were recently shown to achieve excellent performance on the Dyck-2 language [Suzgun et al.,
2019b], we found that they fail to generalize in a more demanding setup, even when an extensive optimization search in
hyperparameter space is performed. In contrast, for small depths already encountered during training, mostly for d = 1,
all models generalized well to longer sentences, showing that they learned to well capture long-range dependencies up
to a given depth, in accordance to previous studies on natural data.

Our ablation study revealed that while the innermost dependency is redundantly encoded, performance on outer
dependencies can be dramatically reduced by ablations of single units. Indeed, we found that a single unit in the
network can robustly encode all grammatical numbers of a sentence of depth three. This provides further evidence for
the emergence of sparse mechanisms for long-range dependencies in LSTM language models [Lakretz et al., 2019].

Several of our models (LSTM, ON-LSTM, stack-RNN and stack-LSTM) showed recency and primacy effects in their
generalization patterns, with stronger recency effects compared to primacy. The recency effect corresponds to the ability
of the models to robustly encode the grammatical feature of the most recently encountered nouns, and is consistent
with the existence of short-range number units in LSTM-LMs. The primacy effect corresponds to the ability of the
model to robustly encode the grammatical feature of the first noun in the sentence, and is consistent with the finding
of long-range number units in LSTM-LMs [Lakretz et al., 2019]. Performance on the middle nouns was found to be
relatively low, suggesting that these models tend to better encode the outer and innermost parts of the syntactic tree.
Intriguingly, human performance shows similar patterns in various cognitive tasks. For example, recency and primacy
effects were reported in free-recall, with typically stronger recency effects compared to primacy ones [e.g., Murdock Jr,
1962]. More closely related to our setup, in psycholinguistics, it was found that subjects tend to judge sentences with
doubly nested relative clause structures as grammatical correct even though these sentences were missing a verb - this
phenomenon is known as ’structural forgetting’ [Gibson and Thomas, 1999]. Importantly, structural forgetting occurs
only with sentences in which the middle verb is omitted. The similarity between the generalization patterns of many of
our RNN models and those reported in humans is therefore striking - we intend to further explore this in future work.
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Supplementary materials

S1 Training Details

We explored with the following hyperparameters when training all the models:

• number of layers: 1, 2, 4

• number of hidden units per: 4, 8, 16, 32

• embedding size: 4, 8

• dropout: 0.1, 0.3

• chunk size (ON-LSTM only): 1, 4

Back propagation through-time length and batch size were set to 32. We used
the ADAM optimizer with learning rate 1e−3 and trained each model for 20 epochs
(except for stack-RNNs and stack-LSTMs for which 3 epochs were enough for
convergence). The optimal model was determined based on validation-set perplexity.
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Figure S1

Figure S2: Training datasets statistics. Each diagram shows the distribution of
depth and maximum spacing corresponding to one of the (p1, p2), 1000000 tokens
training datasets. Note that the total number of sentences per dataset is smaller for
the higher probabilities because sentences are longer.
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Figure S3

Figure S4: LSTMs: Accuracy for M0.7,0.7 on the number-agreement tasks with
spacing equals to two (s = 2). Each pixel corresponds to accuracy on a specific
verb in the sentence when tested on a NA-task with a given depth d.
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(a) A single dependency (d = 1, s = 2). (b) Two dependencies (d = 2, s = 2).

(c) Three dependencies (d = 3, s = 2). (d) Two dependency with long spacing (d =
2, s = 12)

Figure S5: Cell dynamics of unit 23 from M0.5,0.5. Lines represent average values
across all sentences in the NA task. We use line color, style and weight to encode
the number of each noun: red and blue colors represent that the first noun is either
singular or plural, respectively; continuous and dashed lines represent that the
second noun is either singular or plural, respectively; thick and thin lines represent
that the third nouns is either singular or plural, respectively.

(a) Cell states

Figure S6: PCA analysis of cell states for the NA-task: d = 3, s = 2. Note that the
first PC shows a counter-like dynamics.
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Figure S7

Figure S8: Test perplexity for all models. Each diagram corresponds to a (p1, p2)-
training dataset and show the perplexity achieved by each model on the correspond-
ing test dataset.
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Figure S9: SRNs: Average accuracy across all verb on the number-agreement tasks,
for each of the nine models. Each matrix corresponds to a model trained on one of
the (p1, p2)-training datasets. Each pixel in a matrix corresponds to accuracy on
a specific NA-task with a given (d, s). Dashed horizontal and vertical black lines
correspond to the maximal depth and spacing observed during training, respectively.
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Figure S10: SRNs: Accuracy for the nine models on number-agreement tasks with
spacing equals to two (s = 2). Each matrix corresponds to a model trained on one
of the (p1, p2)-training datasets. Each pixel in a matrix corresponds to accuracy
on a specific verb in the sentence when tested on a NA-task with a given depth d.
Dashed horizontal lines correspond to the maximal depth observed during training.
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Figure S11: GRUs: Average accuracy across all verb on the number-agreement
tasks, for each of the nine models. Each matrix corresponds to a model trained on
one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds to accuracy
on a specific NA-task with a given (d, s). Dashed horizontal and vertical black lines
correspond to the maximal depth and spacing observed during training, respectively.
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Figure S12: GRUs: Accuracy for the nine models on number-agreement tasks with
spacing equals to two (s = 2). Each matrix corresponds to a model trained on one
of the (p1, p2)-training datasets. Each pixel in a matrix corresponds to accuracy
on a specific verb in the sentence when tested on a NA-task with a given depth d.
Dashed horizontal lines correspond to the maximal depth observed during training.
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Figure S13: ON-LSTMs: Average accuracy across all verb on the number-
agreement tasks, for each of the nine models. Each matrix corresponds to a model
trained on one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds
to accuracy on a specific NA-task with a given (d, s). Dashed horizontal and vertical
black lines correspond to the maximal depth and spacing observed during training,
respectively.
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Figure S14: ON-LSTMs: Accuracy for the nine models on number-agreement
tasks with spacing equals to two (s = 2). Each matrix corresponds to a model
trained on one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds
to accuracy on a specific verb in the sentence when tested on a NA-task with a given
depth d. Dashed horizontal lines correspond to the maximal depth observed during
training.
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Figure S15: Stack-RNNs: Average accuracy across all verb on the number-
agreement tasks, for each of the nine models. Each matrix corresponds to a model
trained on one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds
to accuracy on a specific NA-task with a given (d, s). Dashed horizontal and vertical
black lines correspond to the maximal depth and spacing observed during training,
respectively.
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Figure S16: Stack-RNNs: Accuracy for the nine models on number-agreement
tasks with spacing equals to two (s = 2). Each matrix corresponds to a model
trained on one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds
to accuracy on a specific verb in the sentence when tested on a NA-task with a given
depth d. Dashed horizontal lines correspond to the maximal depth observed during
training.

13



Figure S17: Stack-LSTMs: Average accuracy across all verb on the number-
agreement tasks, for each of the nine models. Each matrix corresponds to a model
trained on one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds
to accuracy on a specific NA-task with a given (d, s). Dashed horizontal and vertical
black lines correspond to the maximal depth and spacing observed during training,
respectively.
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Figure S18: Stack-LSTMs: Accuracy for the nine models on number-agreement
tasks with spacing equals to two (s = 2). Each matrix corresponds to a model
trained on one of the (p1, p2)-training datasets. Each pixel in a matrix corresponds
to accuracy on a specific verb in the sentence when tested on a NA-task with a given
depth d. Dashed horizontal lines correspond to the maximal depth observed during
training.
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