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Abstract—Studying how the healthy human brain develops

is important to understand early pathological mechanisms

and to assess the influence of fetal or perinatal events on

later life. Brain development relies on complex and intermin-

gled mechanisms especially during gestation and first post-

natal months, with intense interactions between genetic,

epigenetic and environmental factors. Although the baby’s
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brain is organized early on, it is not a miniature adult brain:

regional brain changes are asynchronous and protracted,

i.e. sensory-motor regions develop early and quickly,

whereas associative regions develop later and slowly over

decades. Concurrently, the infant/child gradually achieves

new performances, but how brain maturation relates to

changes in behavior is poorly understood, requiring non-

invasive in vivo imaging studies such as magnetic reso-

nance imaging (MRI). Two main processes of early white

matter development are reviewed: (1) establishment of con-

nections between brain regions within functional networks,

leading to adult-like organization during the last trimester of

gestation, (2) maturation (myelination) of these connections

during infancy to provide efficient transfers of information.

Current knowledge from post-mortem descriptions and

in vivo MRI studies is summed up, focusing on T1- and T2-

weighted imaging, diffusion tensor imaging, and quantita-

tive mapping of T1/T2 relaxation times, myelin water fraction

and magnetization transfer ratio.

This article is part of a Special Issue entitled: The CNS

White Matter. � 2014 IBRO. Published by Elsevier Ltd. All

rights reserved.
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INTRODUCTION

Brain development relies on several complex and

intermingled mechanisms, such as the maturation and

functional specialization of gray matter (GM) regions

(cerebral cortex and central gray nuclei) and the

establishment and myelination of white matter (WM)

connections between the different neural regions.

Typical development is the global consequence of

interactions between genetic programming, epigenetic

and environmental factors (e.g. external stimulations,

maternal, nutritional or medical factors). Cerebral

changes are particularly intense during the last weeks of

gestation and the first post-natal months, as indirectly

highlighted by the non-linear increase of the cranial

perimeter (by about 14 cm during the two first post-natal

years, followed by only 7 cm until adulthood). Although

the baby’s brain is organized early on into functional

networks, it is not an adult brain in miniature: growth

and maturation are asynchronous, some regions, like

the sensory ones, develop early on and quickly,
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whereas associative regions, like frontal ones, develop

later on and slowly until the end of adolescence (Paus

et al., 2001).

Concurrently with this anatomical evolution of the brain,

the infant gradually achieves new psycho-motor and

cognitive skills, but how brain maturation explains the

often abrupt changes of behavior observed during

development is poorly understood. Before the

development of non-invasive brain imaging methods, our

knowledge on human brain development was relying on

(fortunately) rare post-mortem investigations, which are

intrinsically limited by the lack of anatomo-functional

correlations and by the uncertainty on brain normality.

Using myelin staining, most of these studies described

whether myelin is present or not in a given WM region at a

given age: this information is however not bundle-specific

and thus might be misleading at bundles crossings.

Advanced post-mortem dissection techniques now enable

to follow the trajectory of long-distance bundles (Martino

et al., 2010; Maldonado et al., 2013). But absolute

measurements of myelin amount are still missing, which

prevents the quantitative comparison across WM regions.

Another approach to understand brain development is

to study animals, but if such studies enable to test

particular hypotheses, they remain largely inadequate

because of the specificity of human cognitive functioning

and brain development. Mammals are generally

classified according to their developmental stage at

birth, belonging either to species with early development

or to species with immature development. Humans have

a special position since brain responses are already

observed in utero (Draganova et al., 2007), while some

high-level functions have a protracted development over

two decades. For instance, the fiber myelination in the

somatosensory, motor, frontopolar and visual

neocortices is delayed in humans compared with

chimpanzees, with slower myelination during childhood

extending beyond late adolescence (Miller et al., 2012).

The recent development of non-invasive techniques

(magnetic resonance imaging (MRI), electroencepha-

lography (EEG), magnetoencephalography (MEG)) has

further enabled to relate maturation of cerebral structures to

infants’ neurodevelopment and behavior. In particular,

several MRI techniques available on clinical scanners

(section ‘Structural MRI techniques and developmental

specificities’) enable to investigate and follow longitudinally

the brain development and plasticity of healthy and at-risk

children (Barkovich, 2000; Paus et al., 2001; Neil et al.,

2002; Prayer and Prayer, 2003; Huppi and Dubois, 2006;

Yoshida et al., 2013). But when these imaging techniques

are applied to babies, many difficulties arise and require

adapting data acquisition and post-processing to different

developmental periods (fetus, preterm or at-term

newborn, infant, toddler, etc.).

With these constraints inmind, wehere review themain

insights revealed by recent MRI studies on the early

development of WM, which is a complex and long-lasting

process that plays a crucial role during the human motor

and cognitive development (section ‘The basic concepts

of white matter development’). Two main stages can be

delineated: (1) the establishment of long and short
ain white matter: A review of imaging studies in fetuses, newborns and
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connections betweenbrain regions during the last trimester

of human gestation, leading to an early adult-like

organization of neural networks, (2) the maturation of

these fibers during infancy and toddlerhood to provide an

efficient transfer of information between functional

regions. These two processes are consecutively

described in the healthy brain by summarizing current

knowledge obtained from post-mortem and in vivo

imaging studies (sections ‘Imaging the early organization

of white matter’ and ‘Imaging the maturation of white

matter’). Finally, the functional significance of early

structural biomarkers of the developing WM is discussed

based on studies with behavioral and neurophysiologic

evaluations of infants, with a specific focus on preterms

without overt brain lesions (section ‘Functional correlates

of MRI biomarkers of WM maturation’).
THE BASIC CONCEPTS OF WM DEVELOPMENT

The early organization of WM
WM organization in adults. WM contains a large

amount of glial cells (astrocytes, oligodendrocytes and

microglia, which account for around 50% of the total

brain volume and nearly 90% of brain cells), but it is

mainly studied as the brain compartment of crossing

paths that connect different functional regions. Long-

distance fibers, generally gathered into bundles, can be

classified according to their connection patterns.

Commissural fibers connect the two cerebral

hemispheres, mostly between homotopic regions (e.g.

the corpus callosum (CC)). Projection fibers are bi-

directional fibers between the thalamus and the cortex,

between the cortex and the brainstem and spinal cord

(e.g. the cortico-spinal tract (CST), the optic radiations

(OR)). Associative fibers regroup cortico-cortical fibers

between intra-hemispheric regions (e.g. the arcuate

fasciculus (AF)) and fibers of the limbic system (e.g. the

fornix).

Growth of fiber connections during the last trimester of
gestation. The progressive organization of WM

connections has been established with post-mortem

studies. Once the neuron has migrated to its final

localization, it develops connections with other neurons

at both ends: a dendritic tree within the GM, and the

formation of an axon running through the WM. At the

macroscopic level, the axons formation leads to the

formation of long-distance bundles. This wiring occurs

mostly during the second part of pregnancy, but its

exact temporal progression is still poorly described in

humans. It includes processes of neuronal and synaptic

overproduction, followed by cellular apoptosis, axonal

retraction and synaptic pruning. All these processes of

overproduction/elimination are essential to sustain the

functional networks plasticity (Stiles and Jernigan,

2010). The early wave of migrating neurons remains in

the subplate (underneath the future cortex) and is

crucial to establish a first rough blueprint of the cerebral

organization, both for the cortex and the WM. On the

one hand, they relay thalamo-cortical projections in the
Please cite this article in press as: Dubois J et al. The early development of br
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late fetal and preterm brain, amplifying sensory signals

(Kanold and Luhmann, 2010; Kostovic and Judas,

2010), and on the other hand they send pioneering

axons toward the internal capsule to guide axons from

the later migrating neurons (McConnell et al., 1989).

They also guide inter-hemispheric connections through

the CC between 25 and 32 weeks of gestational age (w

GA) (deAzevedo et al., 1997).

To reach their target structure, axons grow and are

guided by their extremity growth cones, which are

attracted or repulsed by positive or negative signals

(e.g. contact signals, chemical signals, neuro-

transmitters, growth factors). They follow ‘‘pioneering’’

axons (process of ‘‘fasciculation’’). The initial connection

production stage is followed by a pruning stage that

aims at suppressing redundant or aberrant circuits and

is dramatically sensitive to the environment

(Huttenlocher and Bonnier, 1991). This process may be

influenced by several factors: e.g. neuron survival,

competition for trophic factors, electrical activity of

axons, afferent inputs. In particular, in the CC, pruning

is a major morphogenetic process between the end of

gestation and the first and second postnatal months

(Innocenti and Price, 2005). In the rhesus monkey, up

to 70% of callosal axons are eliminated in the four first

post-natal months (LaMantia and Rakic, 1990). In

humans, the number of axons in the CC may be close

to a maximum in the newborn brain (with no new axons

being formed to cross the midline), and the process of

axonal pruning is supposed to occur after birth (Kostovic

and Jovanov-Milosevic, 2006).

The maturation of WM

Concurrently and subsequently to the organization of WM

networks, fiber connections become progressively mature

and functionally efficient through the myelination process

that favors the conduction of the nervous impulse

(Baumann and Pham-Dinh, 2001; Van der Knaap and

Valk, 1995a,b).

Myelin description. In the adult brain, the WM white

color is due to the high myelin content (40–50% of dry

weight). The myelin sheaths enwrapped around axons

are complex bilamellar membranes constituted by

lipoproteins (myelin basic proteins (MBP), proteo-lipid

proteins (PLP), myelin associated glycoproteins (MAG),

20,30-Cyclic nucleotide-30-phosphohydrolase (CNP), etc.)

and lipids (cholesterol, phospholipids, glycolipids,

galactocerebrosides, etc.). This ‘‘roll-cake like’’ structure

is formed by the membrane prolongations of

oligodendrocytes in the central nervous system (CNS)

(Barkovich, 2000).

The myelin role is to allow a fast conduction of the

nerve impulse. Indeed, the action potential propagates

along the axon by electrical depolarization of the

nervous membrane, continuously when no myelin

sheath enwraps the axon, or via saltatory conduction

from a Ranvier node to the next (Ranvier nodes are the

fiber places between myelin sheath segments). The

conduction speed depends on the distance between

nodes, on axonal diameter and on the myelin sheath
ain white matter: A review of imaging studies in fetuses, newborns and
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thickness: from 2 m s�1 in unmyelinated CNS fibers to

120 m s�1 in myelinated fibers of the peripheral nervous

system.
Myelination of WM fibers. Myelination (i.e. myelin

formation around axons) is the last stage of WM

development, that begins after the process of axonal

overproduction-pruning and follows premyelinating

stages including the formation and maturation of

oligodendrocytes (Thomas et al., 2000). This process

includes several steps (Hardy and Friedrich, 1996; Butt

and Berry, 2000; Prayer and Prayer, 2003).

Oligodendrocyte precursors proliferate, migrate and

form ‘‘initiator’’ processes, which align along axons

(predominant radial orientation) and identify targeting

axons (Volpe, 2008). Spiral ensheathment around the

axon starts with an extension of such a process that

elongates and wraps around the axon. Afterward, the

myelin sheath becomes more compact, through an

increasing number of spiral turns that is determined by

the axonal diameter (Baumann and Pham-Dinh, 2001).

A single oligodendrocyte myelinates several axons

(even of different diameters), suggesting that each axon

participates to the regulation of its myelination (Friede,

1972). In the human brain, four stages of

oligodendrocyte maturation have been described: early

and late progenitor cells, immature and mature

oligodendrocytes. The immature oligodendrocytes

(which are multipolar cells rich in a lipid called

galactocerebroside) account for 30–40% of the entire

oligodendroglia population in the preterm period

(�28–37 w GA).

The ‘‘pre-myelinating’’ state generally refers to the

initial period when pre-oligodendroglial cells increase

and settle along the axons (Baumann and Pham-Dinh,

2001), and when the cholesterol and glycolipids

concentration starts to increase (Poduslo and Jang,

1984; Barkovich et al., 1988). The following ‘‘true’’

myelination process corresponds to the ensheathment

of oligodendroglial processes around the axons, and to

the chemical maturation of the myelin sheath with rising

amount of macromolecules (Poduslo and Jang, 1984;

Barkovich et al., 1988). At the microscopic level, the

myelination induces major changes in water molecules

content and compartmentalization (Matsumae et al.,

2001) and in protein and lipid contents (Barkovich et al.,

1988; Kucharczyk et al., 1994). Notably, a strong

correlation exists between myelination and the

concentration of galactocerebroside in immature and

mature oligodendrocytes (Matthieu, 1993).
Regional asynchrony of WM myelination. Myelination

occurs in the human brain from the second part of

pregnancy to the end of adolescence. A peak is

observed during the first post-natal year. Its progression

varies across cerebral regions: it follows a caudo-rostral

gradient and progresses from the center to the

periphery. Post-mortem studies have detailed this

sequence (Flechsig, 1920; Yakovlev, 1962; Yakovlev

and Lecours, 1967; Gilles et al., 1983; Brody et al.,

1987; Kinney et al., 1988), using a visual ordering from
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stages 0 to 4 according to staining with hematoxylin and

eosin-luxol fast (‘‘mature myelin’’ refers to stages 3 and

4). Some myelin is observed microscopically from 20 w

GA on at the level of the bulb and pons, which are

myelinated at birth. Mature myelin is detected from 37

to 40 w GA in the cerebellum and internal capsule.

Between the first and third post-natal months, the

posterior limb of the internal capsule (PLIC), the OR

and the CC splenium become myelinated. Mature

myelin can be found from the 6th month in the anterior

limb of the internal capsule (ALIC) and in the CC genu,

from the 15th month in the occipital pole, and from the

23rd month in the frontal and temporal lobes (for review

(Baumann and Pham-Dinh, 2001).

From these post-mortem studies, several rules can be

outlined on the myelination progression in the brain

(Kinney et al., 1988): it occurs earlier and faster (1) in

proximal pathways than in distal ones; (2) in sensory

pathways (somatosensory, vision, audition) than in

motor ones; (3) in projection fibers than in associative

ones; (4) in central regions than in polar ones; (5) in the

occipital pole than in the posterior parietal WM and in

the temporal and frontal poles. These global schemes

cannot be dissociated from one another, and suggest

eight sub-groups of maturation, depending on the

presence/absence of myelin at birth (sub-groups A/B)

and the time periods at which mature myelin is

observed (sub-groups 1–4) (Kinney et al., 1988). For

example, the middle cerebellar peduncles, the optic

tract and chiasm, the PLIC, the CST in the midbrain and

pons and the central corona radiata belong to sub-group

A1; OR (proximal and mid-distal), auditory radiations

(proximal), the CC body and splenium belong to sub-

group B1; cingulum (CG), external capsule (EC), the

ALIC, the CC rostrum and Heschl’s gyrus belong to sub-

group B2; fornix and extreme capsule belong to sub-

group B4. This asynchrony in the maturation sequence

is supposed to depend on the hierarchy of connections

between cortical areas (Guillery, 2005): the early

maturation of receptive sensory areas (responsible for

low-level processing) would enable a stabilization of the

information used by integrative areas (involved in high-

level processing) which develop later on.
Functional correlates of WM myelination. Beside glial

factors, neuronal maturation and electrical activity might

control myelination induction (Kinney et al., 1988).

Blocking this activity in vitro inhibits myelination

(Demerens et al., 1996), and the proliferation of

oligodendrocytes precursors is influenced by

neighboring axonal activity (Barres and Raff, 1993).

Electrical activity in the mouse optic nerve influences

the triggering of myelination over a short time period

(Demerens et al., 1996). This nerve myelination is

further delayed in mice kept in a dark environment after

birth (Gyllensten and Malmfors, 1963) and accelerated

in rabbits whose eyelids have been opened prematurely

(Tauber et al., 1980). Astrocytes may act as an

intermediary between myelination and electrical impulse

activity, through the mediation of a cytokine leukemia

inhibitory factor (Ishibashi et al., 2006). Nowadays, the
ain white matter: A review of imaging studies in fetuses, newborns and
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inhibitory role of oligodendrocytes and myelin on neuritic

growth is also considered, which may partly explain the

weak plasticity of the adult brain (Ng et al., 1996).

Since myelination leads to a spectacular increase in

the conduction speed of the nerve impulse (Baumann

and Pham-Dinh, 2001), it is assumed to improve the

functional efficiency of brain networks (van der Knaap

et al., 1991). Myelination of the midbrain and spinal cord

is actually coupled with behavioral improvement

(Langworthy, 1928a,b), but fiber myelination and

functional maturation are uncorrelated in different

cerebral systems. For instance, the myelination of the

CST occurs before birth in several regions (midbrain,

internal capsule, central corona radiata) while the

newborn motor capacities are weak. On the other hand,

the acoustic radiations have an extended myelination

until 3 years of age while the infant auditory system is

efficient early on.

Such discrepancy may rely on the fact that extending

myelination may be necessary in a second step to

compensate for brain growth and maintain similar

latencies between brain regions across ages (Salami

et al., 2003). In the visual system for example, the

latency of the first positive wave of response to a

stimulus (P1) reaches the adult latency (�100 ms) at

around four post-natal months, whereas the distance

between the retina and the calcarine fissures still

increases by around 6 cm until adulthood. Whereas the

transfer of visual information may be efficient early on in

4-month-old infants, an extending myelination may

enable to further increase the conduction speed by

around 0.6 m s�1 in relation with brain growth.

STRUCTURAL MRI TECHNIQUES AND
DEVELOPMENTAL SPECIFICITIES

Several complementary MRI techniques can be used to

image brain development in healthy infants. Since signal

comes from the hydrogen nuclei (the ‘‘protons’’) of water

molecules, cerebral tissues with different water

concentrations and environments demonstrate on MR

images different contrasts that change with brain

maturation.

Conventional MR imaging and relaxometry
Physical basics. ‘‘Conventional’’ MRI generally refers

to images whose signal is weighted (noted ‘‘w’’) by

proton density (PD) or by relaxation times, which

characterize how fast the water magnetization returns to

equilibrium after the perturbation induced by

electromagnetic waves. The longitudinal relaxation time

(T1) characterizes the proton interactions with its

environment (‘‘spin–lattice’’ interactions), while the

transverse relaxation time (T2) characterizes the

interactions between protons (‘‘spin–spin’’ interactions).

In the developing brain, T1 weighting is generally

obtained with short TR and short TE, or using inversion

recovery sequences with long inversion times (TI), while

T2 weighting is obtained with long repetition times (TR)

and long echo times (TE). Since relaxation times
Please cite this article in press as: Dubois J et al. The early development of br
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depend on tissue characteristics, T1w and T2w images

demonstrate high contrast between cerebral tissues in

the adult brain (Fig. 1).
Developmental specificities of T1w and T2w con-
trasts. Because of brain tissues immaturity and high

water content, T1w and T2w contrasts are very different

in the infant brain from what is described in the adult

brain, and contrasts evolve with brain maturation

(Fig. 1). Considering the brain as a whole, successive

maturational stages are described (Paus et al., 2001):

(1) the infantile pattern (0–6 months), showing a reversal

of the normal adult contrasts (T1w: lower WM intensity

than GM intensity; T2w: higher WM intensity than GM

intensity); (2) the iso-intense pattern (8–12 months),

characterized by a poor contrast between GM and WM;

and (3) the early-adult pattern (>12 months) (T1w:

higher WM intensity than GM intensity; T2w: lower WM

intensity than GM intensity). Actually, the specific time-

course of these patterns depends on brain regions

because of maturation asynchrony (see Section ‘Imaging

the maturation of white matter’).

As a consequence, the delineation between the GM

and WM is often not obvious on infant images, contrarily

to the clear border observed on adult T1w images. T1

weighting is mostly used during the preterm and

perinatal periods, but the contrast becomes poorer with

age until it recovers during the second post-natal year.

T2 weighting transitorily enables a better contrast

between term and 4–6 months post-term (Leroy et al.,

2011b). The second post-natal semester is actually the

most difficult period to image, with a weak delineation of

the GM/WM border.

To identify myelinated WM regions from unmyelinated

regions, T1w contrast is generally preferred during the

first 6–8 post-natal months, and T2w contrast between 6

and 14 months because changes in WM contrasts are

observed on T1w images before T2w images (van der

Knaap and Valk, 1990; Barkovich et al., 1992).
Mapping T1 and T2 relaxation times during WM
maturation. The changes observed on T1w and T2w

contrasts can be used to understand maturation

processes, but T1w and T2w signals cannot be directly

compared across individuals because of the variability

between exams related to technical tunings. To provide

such inter-individual comparisons, either signals may be

normalized for each subject in reference to a given

tissue (e.g. the cerebro-spinal fluid) (Leroy et al.,

2011a), or T1 and T2 relaxation times may be

quantitatively measured (Fig. 1) by recording signals

from dedicated MRI acquisitions with different sequence

parameters (e.g. different inversion times TI to compute

T1, different echo times TE to compute T2).

In the developing brain, T1 and T2 decrease more

strongly in WM than in GM because of myelination

processes (Fig. 4a) (Barkovich, 2000; Prayer and

Prayer, 2003). At least two distinct pools of water

molecules are supposed to contribute to MR signal in

the WM: water located within the myelin sheath (with

relatively short T1 and T2 relaxation times) and intra-
ain white matter: A review of imaging studies in fetuses, newborns and
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Fig. 1. Anatomical images of the developing brain. T1w and T2w images are presented for subjects of different ages: a preterm newborn of

31 weeks of gestational age (GA), term-born infants at a post-term age (PTA) of 6 weeks, 19 weeks and 34 weeks (PTA: post-natal age corrected

for gestational age at birth, considering a term age of 40 weeks), and a young adult. Note the contrast inversion between GM andWM during the first

post-natal year. For the infants and adults, quantitative maps of T1 and T2 relaxation times (in seconds), and of myelin water fraction (MWF) are

also presented. Within the white matter, T1 and T2 decrease with age, while MWF increases. Preterm images were acquired on a 1.5-T MRI

system, the other images on a 3-T system.
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axonal, intra-cellular and interstitial water (i.e. water

outside of the myelin sheath, with longer T1 and T2).

Both T1 and T2 decreases parallel the decrease in

water concentration, nevertheless their time courses are

different, and two distinct mechanisms can be

distinguished: the change in water molecules

compartmentalization (Matsumae et al., 2001), and the

increase of protein and lipid contents (Barkovich et al.,

1988; Kucharczyk et al., 1994). T1 shortening starts

already during the ‘‘pre-myelinating’’ state, while T2

shortening correlates temporally with the chemical

maturation of the myelin sheath (Poduslo and Jang,

1984; Barkovich et al., 1988; Baumann and Pham-Dinh,

2001) (Fig. 4c).
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Diffusion imaging
Physical basics and post-processing strate-
gies. Another recent approach to assess WM

maturation is diffusion-weighted imaging (DWI) which

measures the natural motion of water molecules. The

diffusion in cerebral tissues is not ‘‘free’’ (Le Bihan,

2003). Microscopic displacements may be restricted

within multiple physical compartments, or hindered by

cell and organelle membranes: this results in tortuous

pathways around these obstacles. Imaging diffusion at

the macroscopic scale thus enables to explore the

tissue microstructure non-invasively (Le Bihan et al.,
ain white matter: A review of imaging studies in fetuses, newborns and
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Fig. 2. DTI images of the developing brain. DTI maps are presented for the same subjects as in Fig. 1. Color-coded directionality maps (FA-RGB,

where color informs on the direction of the tensor main eigenvector) nicely highlight early WM organization, and immature bundles already

demonstrate high fractional anisotropy (FA). The different DTI parameters provide different contrasts between brain tissues. Within WM, FA

increases with age, while mean (MD), longitudinal (k//) and transverse (k\) diffusivities (in 10�3 mm2 s�1) decrease.
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2001). To take into account the spatial heterogeneity of

the diffusion process, the diffusion information is

generally encoded in different spatial directions, and the

diffusion tensor (DT) formalism is used with the

assumption that a single fiber orientation is present in

each voxel of the image and that the diffusion process

can be represented by an ellipsoid that encodes the

tensor eigenvectors and eigenvalues. The diffusion

tensor imaging (DTI) technique provides maps of

quantitative and complementary parameters (Fig. 2):

diffusion anisotropy (e.g. fractional anisotropy (FA))

(Beaulieu, 2002), mean diffusivity (MD= one third of

the tensor trace), longitudinal diffusivity (k// = diffusivity

along the main tensor axis) and transverse diffusivity

(k\ = diffusivity perpendicular to the main axis).
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The trajectory of WM fibers can be further

reconstructed virtually in 3 dimensions (3D) using

tractography algorithms that follow the direction of the

main DT eigenvector from a voxel to a neighboring

voxel (Le Bihan and Johansen-Berg, 2012) (Fig. 3). The

dissection of major WM bundles is then based either on

the individual definition of regions crossed by the fibers,

or through automatic classifications recently proposed

for the adult brain, such as clustering (Guevara et al.,

2011, 2012) and probabilistic methods (Yendiki et al.,

2011). Recently, some alternatives to the tensor model

have been proposed, such as Q-ball imaging, diffusion

spectrum imaging (DSI) and high-angular resolution

diffusion imaging (HARDI). These techniques enable to

resolve multiple fiber orientations within a voxel, but
ain white matter: A review of imaging studies in fetuses, newborns and
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Fig. 3. Tractography of the developing WM bundles. Examples of major WM bundles, reconstructed with regularized tractography using

Connectomist software (Duclap et al., 2012), are presented for the 6-week-old infant and the adult of Figs. 1 and 2: projection and limbic pathways

(left column), and associative pathways (right column). Note the similar organization between the infant and adult brains. Abbreviations: AF, arcuate

fasciculus; ALIC, anterior limb of the internal capsule; CG, cingulum; CST, cortico-spinal tract; FOF, fronto-occipital fasciculus; ILF, inferior

longitudinal fasciculus; OR, optic radiations; SLF, superior longitudinal fasciculus; STT, spino-thalamic tract; UF, uncinate fasciculus.
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they require long acquisition times hardly achievable

in vivo in healthy unsedated infants.
DTI correlates of WM maturation. DTI parameters are

well suited to reveal information that is not apparent on

T1w and T2w images during brain development (Fig. 2)

(Neil et al., 2002; Huppi and Dubois, 2006). It is

generally assumed that diffusivities decrease with

maturation, while anisotropy increases in the developing

WM (Neil et al., 1998; Huppi et al., 1998a) and

decreases in the cortex during the preterm period

(McKinstry et al., 2002; Ball et al., 2013). Transverse

diffusivity decreases more in WM than in GM

(Mukherjee et al., 2002), leading to a reversed contrast

between newborns and adults on transverse diffusivity

maps (Fig. 2). In WM bundles, changes are more

intense for transverse than for longitudinal diffusivity

(Mukherjee et al., 2002; Dubois et al., 2008b; Geng

et al., 2012), with even no change in longitudinal

diffusivity detected after 1 year of age (Gao et al.,

2009). These parameter dynamics in WM bundles are

consistent with the assumption of a cylindrically

symmetric decrease in diffusion due to myelination

process (Mukherjee et al., 2002).

Fifteen years ago, it had been suggested that the age-

related decrease in mean diffusivity in both GM and WM

would reflect the overall decrease in brain water

content, while the increase in anisotropy in the WM

would rather rely on its microstructure (e.g. packing and

myelination) (Neil et al., 1998). Nowadays the current

hypotheses on the relationships between these
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parameters and the maturational mechanisms are

recognized as more complex in the WM (Fig. 4b).

Even in the absence of myelin, the tight organization

of WM fibers inside a bundle lead to intrinsic anisotropy

related to high longitudinal diffusivity contrasting with

low transverse diffusivity (Beaulieu, 2002). Studies in rat

pups have shown that the first evidence of anisotropy

precedes initial myelin (Wimberger et al., 1995), and

that this early anisotropy may be related to sodium-

channel activity (Prayer et al., 2001).

During the first stage of myelination (‘‘pre-

myelination’’), when glial cell bodies and membranes

proliferate, both a decrease in brain water content and

an increase in membrane density are observed, which

imply decreases in mean, longitudinal and transverse

diffusivities. Whereas this mechanism had initially been

assumed spatially isotropic (Dubois et al., 2008b),

recent evidence rather suggests that the initial extension

of oligodendroglial processes is anisotropic in favor of

the axonal direction (Zanin et al., 2011; Nossin-Manor

et al., 2012). This anisotropy increase has been related

to the maturation of the compound action potential and

the development of immature oligodendrocytes in the

rabbit developing WM (Drobyshevsky et al., 2005).

The following ‘‘true’’ myelination process (with the

ensheathment of oligodendroglial processes around the

axons) is further accompanied by a decrease in both

membranes permeability and extracellular distance

between membranes, implying an increase in

anisotropy, a decrease in transverse diffusivity, but no

change in longitudinal diffusivity. At crossing fibers

places, the situation may appear puzzling when crossing
ain white matter: A review of imaging studies in fetuses, newborns and
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Fig. 4. Illustrations of maturation-related changes in MRI parameters. (a) The decreases in T1 and T2 relaxation times (increases in relaxation rates

R1 = 1/T1 and R2 = 1/T2) are more intense in the developing WM than in the developing GM, which leads to contrast inversions on T1w and T2w

images during the first post-natal year (Fig. 1). Post-mortem images of WM myelin staining were reproduced from (Flechsig, 1920). (b) During the

myelination of WM fibers, two successive processes occur: ‘‘pre-myelination’’ with oligodendrocytes and membranes proliferation, and ‘‘true’’

myelination. Both lead to changes in DTI parameters: e.g. increase in fractional anisotropy (FA) and decrease in transverse diffusivity (k\) in the

case of a single maturing bundle (upper row) (Dubois et al., 2008b). But changes are more complex in other configurations, for instance when

crossing bundles are maturing at different times (lower row). (c) In summary, quantitative parameters are expected to change at different times

depending on the major steps of WM maturation (bundles fasciculation, ‘‘pre-myelination’’, ‘‘true’’ myelination), suggesting strong parameters

complementarity. In a single-bundle configuration, anisotropy (FA) increases, mean (MD) and transverse (k\) diffusivities decrease, while

longitudinal diffusivity first increases (dashed line) then decreases (Dubois et al., 2008b). T1 and T2 relaxation times decrease, whereas myelin

water fraction (MWF) and magnetization transfer ratio (MTR) increase (the dashed line corresponds to MTR observations in preterm corpus

callosum (Nossin-Manor et al., 2012)).
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bundles follow different maturational calendars: when the

first bundle gets myelinated, anisotropy first increases,

but it subsequently decreases when the second

crossing bundle gets mature (the reverse argument has

been detailed for neurodegenerative disorders (Douaud

et al., 2011)); at the same time, diffusivities are

decreasing (Fig. 4b).

Therefore anisotropy and longitudinal diffusivity are

rather good markers of tissue macrostructure and

organization, finely characterizing compactness,

crossing fibers, etc. but the interpretation of their

changes may remain difficult during WM maturation. On

the contrary, transverse diffusivity consistently

decreases with all maturational processes (Fig. 4c).

Recently, other geometrical diffusion measures (linear

and planar diffusion anisotropies Cl and Cp) have been

considered to model more accurately different WM

microstructures in comparison with the classical

cylindrical shape of a fiber bundle (Chen et al., 2011).

During maturation, these parameters may be sensitive
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to changing compactness since after birth Cl growth

velocities are highest in central WM while Cp growth

velocities are highest in peripheral WM.

Finally, let us keep in mind that DTI parameters vary

across bundles in the adult brain, in relation with their

macroscopic geometry and compactness. Highlighting

maturational effects in the developing brain thus requires

either considering the developmental trajectories toward

adulthood to evaluate the asymptotes of maturation, or

normalizing infant measurements by the adult references

(Dubois et al., 2008a).

Myelin-related imaging parameters

Other quantitative parameters relying on the myelin

amount have been proposed to evaluate the maturation

of WM.

Magnetization transfer ratio. The ‘‘magnetization

transfer ratio’’ (MTR) informs about the ratio between

free water and water with restricted motion, bound to
ain white matter: A review of imaging studies in fetuses, newborns and
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macromolecules such as proteins and lipids (McGowan,

1999). Thus it is thought to reflect the myelin amount

and increase during WM maturation (Kucharczyk et al.,

1994). Nevertheless, during the preterm period

(26–34 w GA), MTR values have been found higher in

the genu and splenium of the CC than in the PLIC and

the periventricular white matter (PVWM) (Nossin-Manor

et al., 2012). Since at this stage callosal fibers are

highly organized, closely packed, but non-myelinated

fibers, this technique appears to be sensitive not only to

myelin-associated macromolecules, but also to the

macromolecular density of axonal cytoskeleton

components such as microtubules and neurofilaments

(Nossin-Manor et al., 2012) (Fig. 4c).

Myelin water fraction. As for approaches based on

‘‘multi-component relaxation’’ (MCR) analyses, different

pools of water molecules are modeled in each voxel

(Spader et al., 2013). These pools can be distinguished

from measured MR signals, on the basis of different

relaxometry properties (T1 and/or T2) and of specific

exchange relationships (Menon et al., 1991; Whittall

et al., 1997; Beaulieu et al., 1998). Such decomposition

is supposed to provide valuable information on the

tissue microstructure. Whereas the exact number of

pools to be modeled is still debated (Deoni et al.,

2012b), a consistent pool of water related to myelin is

always considered, and studies generally describe maps

of ‘‘myelin water fraction’’ (MWF) (Fig. 1). This fraction

drastically increases during WM maturation (Deoni

et al., 2012a) (Fig. 4c). Contrarily to relaxation times,

the definition of MWF is a priori independent from the

magnetic field. But its computation is highly sensitive to

both the acquisition protocol and the post-processing

modeling, making direct comparisons across studies

hardly achievable.

Practical considerations for imaging the developing
brain
In vivo imaging of the baby brain. The pre- and post-

term periods are radically different, not only in terms of

brain organization (see next section) but also in terms of

practical possibilities to obtain MR images. Because

infants after term are generally healthy, ethical and

practical issues are similar to older ages. On the

contrary, the main difficulty in imaging the pre-term

period is to obtain images of healthy (or at least not

neurologically ill) brains. Imaging fetuses in utero is not

commonly done without strong medical arguments.

Similarly, preterm newborns are at high-risk of

neurological lesions, and their physiological stage is

very unstable making them difficult to move to MRI

center without good reasons.

In all cases, imaging fetuses and infants is a

challenge. Data are difficult to acquire first because of

the techniques’ sensitivity to motion. Without clinical

indication, healthy babies cannot be sedated, then one

cannot prevent a fetus to move within the womb, and

quietness is difficult to obtain in infants during a long

time. Thus, data acquisition should remain short,
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especially in preterms in whom it is difficult to maintain a

stable thermal state inside the MR scanner. Acoustic

noise should also remain reasonable, in order to avoid

any acoustic trauma and discomfort, and to assure

baby’s sleep or quiet cooperation. Second, despite short

acquisition time, image spatial resolution should be

higher than in adults because cerebral structures are

smaller. That is why the scarce images obtained at

early ages (i.e. before 5 months of gestation) have been

obtained in post-mortem fetuses with very long

acquisition times.

Technical constraints of conventional imaging. The

developing brain is changing every day, much more

rapidly than the adult brain between 20 and 50 years of

age, and T1w and T2w contrasts change with the brain

tissues maturation. This contrast variability and the use

of different MR sequences along the first post-natal year

require dedicated post-processing tools for different

developmental periods to segment unmyelinated and

myelinated WM from other cerebral tissues (GM,

cerebro-spinal fluid). However it may lead to

misclassification of cerebral tissues (Matsuzawa et al.,

2001; Choe et al., 2012), and the comparison across

ages remains difficult.

Technical constraints of DTI. The signal-to-noise ratio

(SNR) of DW images decreases with infants’ age

because both T2 relaxation times and diffusivities

decline during the first post-natal months (Mukherjee

et al., 2002). Actually the reliability of DTI estimation is

influenced by SNR and by the number of diffusion

directions. To a certain extent, acquiring more directions

is equivalent to averaging (Dubois et al., 2006a).

Adapting the number of diffusion directions according to

the infants’ age (with more numerous directions in older

infants) is worth considering to make the data

reproducible across subjects. Furthermore, DTI

quantification is particularly sensitive to motion artifacts,

and several strategies have been proposed to reduce or

correct them during the acquisition (Dubois et al.,

2006b) or in post-processing (Dubois et al., in revision).

IMAGING THE EARLY ORGANIZATION OF WM

Imaging the WM growth
Increase in WM volume. With all these difficulties in

mind, we can try to appreciate the WM growth by

estimating its volume from T1w and T2w images

acquired before and after term (Fig. 5a). In normally

developing fetuses in utero, the global volume of the

intermediate zone and subplate (whose frontier remains

difficult to delineate) increases from around 15 to

90 cm3 between 21 w and 31 w GA, i.e. 15% per week

(Scott et al., 2011). In premature neonates, the WM

volume increases from around 50 cm3 at 29 w GA to

170 cm3 at 44 w GA, as reported in age-specific atlases

(Kuklisova-Murgasova et al., 2011). Afterward, a

longitudinal follow-up study in infants has demonstrated

that WM volume increases from around 164 cm3 at term
ain white matter: A review of imaging studies in fetuses, newborns and
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Fig. 5. Age-related changes in WM volume and DTI parameters. Age-related changes in WM volume (a) and in DTI parameters (b) are highlighted

in different populations: preterm newborns (left column), at term-born newborns or infants (middle column) and during the first two post-natal years

(right column). Note that WM volume increases more slowly than GM volume. Fractional anisotropy (FA) increases in major WM bundles, while

mean (MD) and transverse (k\) diffusivities decrease. DTI parameters strongly differ among WM bundles. Figures were adapted with permission

from different studies: WM volumes in preterm newborns imaged at 3 T (Kuklisova-Murgasova et al., 2011), in newborns at term imaged at 3 T

(Gilmore et al., 2007), in infants at 0, 1 year and 2 years of age imaged at 3 T (Knickmeyer et al., 2008); DTI parameters in preterm newborns

imaged at 1.5 T (Partridge et al., 2004), in infants imaged at 1.5 T (Dubois et al., 2008b), in infants at 0, 1 year and 2 year of age imaged at 3 T

(Geng et al., 2012). Abbreviations: AFinf, inferior branch of the arcuate fasciculus; ALIC, anterior limb of the internal capsule; CG, cingulum; CS,

centrum semiovale; CST, cortico-spinal tract; EC, external capsule; ILF, inferior longitudinal fasciculus; OR, optic radiations; PLIC, posterior limb of

the internal capsule; STT, spino-thalamic tract; UF, uncinate fasciculus.
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birth to 183 cm3 at 1 year of age (i.e. increase by 11% per

year), to 218 cm3 at 2 years of age (i.e. increase by 19%

per year).

Thus at these ages WM growth is relatively slow in

comparison with the rapid GM growth (by 149% in the

first year and 14% in the second year), leading to a

decrease in the percentage of WM when normalized for

the total brain volume (Gilmore et al., 2007; Knickmeyer

et al., 2008). Subsequently the WM volume increases at

a higher rate than GM volume throughout childhood

(Matsuzawa et al., 2001), and the ratio between WM

and GM volumes dramatically increases during

childhood and adolescence (Groeschel et al., 2010).

Imaging a mix of several processes. While WM tissue

is imaged as a whole on T1w and T2w images, its volume

increase actually reflects several processes that occur

successively or concomitantly during development, but

whose contributions are hard to separate. WM

composition is changing dramatically, especially during the

mid-gestation period which is marked by neuronal

migration: pyramidal neurons follow radial patterns along
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glial fibers, from the central periventricular region to the

cortical periphery, while interneurons follow tangential

patterns from the ganglionic eminence. Axonal

connections are also growing from central gray nuclei and

from cortical regions. Besides, the vascularity is

developing according to a radial organization. These

coherent structural patterns are mixing, making the

dissection of growing fascicles difficult. Concurrently, glial

cells proliferate: oligodendrocytes play a crucial role to

myelinate axonal fibers during the late pre-term and post-

term periods, while the contribution of developing

astrocytes and microglia is still poorly understood, notably

in terms of metabolism. Overall, several mechanisms

contribute to the global increase in WM volume, and more

subtle MRI techniques are thus required to detail the

axonal organization in the growing WM.
Before term: imaging the growth of fiber connections
Post-mortem investigations with conventional
MRI. Correlation studies between histology and
ain white matter: A review of imaging studies in fetuses, newborns and
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conventional MRI with high spatial resolution in post-

mortem fetuses (Judas et al., 2005; Rados et al., 2006)

have shown that three fiber systems are recognizable

as early as 12 w GA: the CC, the fornix and the

hemispheric stalk, which represents a massive

connection between the telencephalon and the

diencephalon and contains all the projection fibers of the

developing internal capsule, including the thalamo-

cortical fibers. During the mid-fetal period (17–24 w GA),

a substantial elaboration of major cerebral fiber systems

is observed in the ‘‘intermediate zone’’ (the fetal ‘‘WM’’).

In the fronto-polar and occipito-polar regions, the fiber

architectonics of the fetal cerebrum displays a tangential

axon strata. Below the CC, the fornix is well developed.

The CC, the internal and ECs are growing. In the

central WM, the ‘‘periventricular crossroads’’ are the

intersections between these major fiber systems:

callosal fibers (transverse direction), associative fibers

(sagittal direction), thalamo-cortical/cortico-fugal fibers

(radial direction).

Between 24 and 32 w GA, the major events are the

development of the corona radiata, from the

transformation of the tangential fetal fiber-architectonic

stratification. All major segments of the cerebral WM can

be recognized: CC, corona radiata, centrum semiovale

(CS), gyral WM (which is not yet fully developed

because the subplate zone remains interposed between

the corona radiata and the cortex). Fibers continue to

grow at the levels of the periventricular crossroads and

of the ventricular part of the CC, which leads to a

blurring on post-mortem images. By term birth, all major

fiber systems are to be in place.
Post-mortem investigations with diffusion imag-
ing. DTI imaging is an exquisite technique to detail the

developing organization of WM and precise the

developmental calendar observed on conventional

images. Imaging fetuses post-mortem at 19–20 w GA

confirmed that limbic fibers (CG, fornix) develop first

(entire trajectories visible at 19 w GA) and association

fibers last (Huang et al., 2006). The CC, the UF and

inferior longitudinal fasciculus (ILF) become apparent

between 13 and 22 w GA (Huang et al., 2009). At 20 w

GA, the CC formation is more advanced in the frontal

lobe (genu and forceps minor) than in other regions

(splenium and forceps major, body). The core regions of

projection fibers are well-developed early on, but not the

peripheral regions (i.e. the corona radiata), and the

ALIC develops before the posterior limb.

The more elaborated technique of HARDI

tractography applied to post-mortem fetuses between

19 w to 42 w GA (Takahashi et al., 2012) has clarified

the calendar of tract development. A few immature long-

range association pathways are visible early on in the

WM (e.g. the uncinate and fronto-occipital fascicles),

and short-range cortico-cortical tracts emerge prior to

gyrification in regions where sulci will later develop. An

early dominant radial organization of WM that gradually

diminishes by term age is observed. This feature

disappears first in dorsal parieto-occipital regions,

second in ventral fronto-temporal regions; earlier at the
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depths of sulci than in the crests of gyri. At 19 w GA,

the ganglionic eminence presents a dominant tangential

organization which gradually disappears by term. These

radial and tangential patterns are related to neuronal

migration as confirmed by the combination of HARDI

technique with the structural analysis of conventional

images in post-mortem fetuses between 21 w and 24 w

GA (Kolasinski et al., 2013). The radial pattern

originates in dorsopallial ventricular/subventricular zone,

while the tangentio-radial patterns originate in subpallial

ganglionic eminence. These patterns regress in a

caudo-rostral and lateral–ventral to medial–dorsal

direction across this short developmental period. The

post-mortem application of immunomarkers to radial

glial fibers, axons, and blood vessels has enabled to

decipher the histological origins of the HARDI-defined

coherence (Xu et al., 2012), suggesting that the radial

coherence in the fetal WM likely reflects a mixture of

radial glial fibers (at mid-gestation), penetrating blood

vessels (that are consistently radial), and radial axons

(among radial, tangential and oblique axons).

In vivo investigations. Data acquired in vivo in preterms

and fetuses have confirmed post-mortem studies. Using

diffusion imaging, the early laminar organization of the

cerebrum (cortical plate, subplate zone, intermediate

zone, subventricular and periventricular zones, germinal

matrix) has been delineated in 25–27 w GA preterm

newborns (Maas et al., 2004). Imaging studies of in utero
fetuses have described that the pyramidal tract and the

splenium and genu of the CC are depicted early on and

may be reconstructed in 3D using tractography

algorithms between 18 and 37 w GA (Bui et al., 2006;

Kasprian et al., 2008; Pontabry et al., 2013), as well as

the Probst bundles in cases of CC agenesis (Kasprian

et al., 2013). In preterms, association tracts and

subcortical projection tracts are also identified (Partridge

et al., 2004; Dudink et al., 2007).

After term: imaging the WM bundles and developing
connectivity
Imaging the WM bundles. After term birth, almost all

prominent WM tracts are identified despite low

anisotropy values (Hermoye et al., 2006). This early

organization has been further mapped in 3D in infants

between 1 and 4 months of age, using a dedicated

protocol for acquisition and post-processing (Dubois

et al., 2006a, 2008b). Most commissural bundles (genu,

body and splenium of the CC), projection bundles (CST,

spino-thalamic tract (STT), OR, ALIC), limbic bundles

(fornix and CG) and associative bundles (EC, uncinate,

arcuate, superior and inferior longitudinal fascicles) can

be detected and tracked (Fig. 3). In a longitudinal study

using a dedicated DTI atlas, a similar organization of the

major bundles has been shown between newborns and

toddlers of 1 and 2 years of age (Geng et al., 2012).

However, some associative bundles that mature later

on (see section ‘Imaging the maturation of white matter’),

such as the superior longitudinal fasciculus, demonstrate

large changes in fiber orientations during the first
ain white matter: A review of imaging studies in fetuses, newborns and
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post-natal months (Zhang et al., 2007). High-field imaging

at 3 T may enable the precise exploration of subtle

connections within specific developing networks (e.g. the

language network (Dubois et al., in preparation)). Actually

one should keep in mind that DTI methodology does not

enable to decipher between exact fiber directions in the

place of crossing fibers, particularly when crossing

bundles are maturing at different rates and over different

time periods. This leads to erroneous interpretation on

the presence/absence of a bundle in the developing

brain. Accordingly, the dorsal pathway of the developing

language network (the AF) may not seem to fully connect

temporal and frontal regions in newborns (Perani et al.,

2011; Brauer et al., 2013), but this might be artifactually

related to its low maturation in comparison with the

crossing CST (Dubois et al., in preparation).

Developing WM connectivity. Recently, the wiring

pattern of cerebral connections and the maturational

calendar have been reinterpreted in the framework of

small-world topology (Hagmann et al., 2010). The

principal characteristics observed in adults have been

found in infants demonstrating that the infant brain is

neither fully connected, nor only locally connected (Fan

et al., 2011; Yap et al., 2011; Pandit et al., 2013). This

result might appear trivial, given the anatomical results

reviewed above showing that the short and main long-

distance connections are already observed before term,

but this approach has the advantage to have no a priori
and to place the brain within a mathematical formalism.

Longitudinal studies performed from birth to two years

of age and based on regional GM volumes (Fan et al.,

2011) and on the number of fibers passing through pairs

of regions (Yap et al., 2011) have been interpreted as

showing an increase in integration and a decrease in

functional segregation.

Behavioral and functional studies certainly support

such hypotheses, but structural studies are confronted

with several unsolved drawbacks. For example, the

difficulties in GM/WM segmentation vary with age due to

changes in T1w and T2w contrasts; weakly myelinated

fibers may appear shorter because of lower anisotropy

that impacts tractography reconstructions; smaller head

size creates partial volume effects that might blur

connectivity results in younger infants. Finally, network

efficiency is sometimes indirectly inferred from diffusion

metrics (Hagmann et al., 2010), and not directly from

the transfer times of the neural information, whereas the

information propagation at the same latency in the infant

and adults brains may not require a similar tract

myelination because of the different brain sizes (Salami

et al., 2003). Fortunately, combining these structural

measures with electrophysiological and/or resting-state

fMRI has indeed shown a strengthening of the

correlations between structural and functional

connectivities (Hagmann et al., 2010).

IMAGING THE MATURATION OF WM

When the bundles are in place, a slow process of

maturation begins, following a different calendar in

different bundles.
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Different periods of WM maturation
Before term: localized myelination. Before 36 w GA,

unmyelinated WM is the most prominent brain tissue

according to T1w and T2w images, and an abrupt

increase in myelinated WM is detected between 35 and

41 w GA (Huppi et al., 1998b). However, there is earlier

evidence of myelination in specific WM regions

(Counsell et al., 2002) such as the inferior and superior

cerebellar peduncles before 28 w GA, the PLIC, the

CST around the central sulcus and the corona radiata

from 36 w GA on.

DTI studies of in utero fetuses (Righini et al., 2003; Bui

et al., 2006; Kasprian et al., 2008; Jiang et al., 2009) and

ex utero preterm newborns as young as 26 w GA (Huppi

et al., 1998a,b; Neil et al., 1998; Miller et al., 2002; Dudink

et al., 2007; Aeby et al., 2009, 2012) have found the

general pattern of age-related decrease in mean

diffusivity and increase in anisotropy in different WM

regions (pyramidal tract, CC, frontal and occipital

regions). In longitudinal imaging between 28 and 43 w

GA (Partridge et al., 2004), early differences have been

further identified between several projection and

association pathways, with low mean diffusivity and high

FA in cerebral peduncles, internal capsule and

commissural tracts of the CC, suggesting an early

maturation of these tracts (Fig. 5b) and confirming the

analyses done on T1w/T2w images.

After term: major changes related to myelination. After

term, WM myelination is intense in the developing brain,

and quantitative MRI parameters have underlined

successive maturational periods: acute changes during

the first post-natal months, less rapid modifications

during toddlerhood, and slower changes thereafter until

young adulthood. It is particularly obvious for DTI

parameters (Fig. 5b): decrease in MD and increase in

FA are rapid during the first post-natal year and slower

during the second year (Mukherjee et al., 2001; Forbes

et al., 2002; Hermoye et al., 2006; Geng et al., 2012;

Sadeghi et al., 2013). Age-related decreases in

diffusivities have been modeled through exponential

decays from birth to childhood (Mukherjee et al., 2001),

or by a sigmoid function (Gompertz growth function,

based on intuitive variables related to delay, speed, and

expected asymptotic value) longitudinally from birth to

2 years of age (Sadeghi et al., 2013).

In the same way, T1 and T2 decreases are particularly

rapid over the two first years (Engelbrecht et al., 1998;

Haselgrove et al., 2000), yielding to exponential decays

with age (Fig. 6a) (Leppert et al., 2009). Conversely, the

MTR increases exponentially (Engelbrecht et al., 1998;

van Buchem et al., 2001) (Fig. 6b). Between 3 and

60 months, the increase in MWF is best modeled by a

modified Gompertz function which is characterized by

four distinct parameters: the developmental lag, the

transitionary period and two growth rates (Fig. 6c)

(Dean et al., 2014).

To summarize, for all MRI and DTI parameters, the

dynamic of changes is intense between birth and

2 years of age, which does not match the relatively slow
ain white matter: A review of imaging studies in fetuses, newborns and
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Fig. 6. Age-related changes in quantitative parameters related to myelin. Relaxation times T1 and T2 (a), magnetization transfer ratio (MTR) (b)

and myelin water fraction (MWF) (c) are shown during infancy and toddlerhood. T1 and T2 decrease exponentially with age while relaxation rates

(Ri = 1/Ti), MTR and MWF increase (left column). Note parameters variability across WM regions, which demonstrate different temporal maturation

courses (left and middle columns). Some correlations between the parameters have been shown (right and middle columns), but these correlations

mainly rely on co-variations with the infants age. Figures were adapted with permission from different studies: age-related changes in T2 and MTR

at 1.5 T in infants (Engelbrecht et al., 1998), variability in relaxation rates at 3 T in newborns at term (Williams et al., 2005), correlations between

MTR, T1 and FA at 1.5 T in preterm newborns (Nossin-Manor et al., 2012), MWF increase at 3 T in infants (Deoni et al., 2012a). Abbreviations:

PLIC, posterior limb of the internal capsule; PVWM, peri-ventricular white matter.
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increase in WM volume during this developmental period.

Furthermore these non-linear patterns of changes reveal

considerable regional variations across and along WM

bundles because of myelination asynchrony.
Spatio-temporal sequence of WM maturation
Maturation asynchrony across WM bundles. The

interest of DTI studies rests in the quantification of

differences across WM bundles, detailing a progression

of maturation from a central-to-peripheral and a

posterior-to-anterior direction (Oishi et al., 2011). For

instance, the increase in anisotropy appears greater in

non-compact ones (corona radiata and peripheral WM)

than in compact WM structures (CC, internal capsule,
Please cite this article in press as: Dubois J et al. The early development of br

infants. Neuroscience (2014), http://dx.doi.org/10.1016/j.neuroscience.2013.12
cerebral peduncle) across the first three post-natal

years (McGraw et al., 2002). Diffusivities and anisotropy

show different evolutive patterns across brain regions of

the preterm brain (Nossin-Manor et al., 2012) and of the

infant brain during the first two post-natal years (Geng

et al., 2012), with highest FA in the CC and lowest

mean diffusivity in the PLIC.

By taking advantage of the different sensitivities of

diffusivity and anisotropy to maturational processes, a

model based on the parameter changes during the ‘‘pre-

myelination’’ and the ‘‘true’’ myelination periods was

build to describe the bundles maturational stages in

infants between 4 and 18 weeks of post-natal age in

comparison with an adult group (Dubois et al., 2008b).

This model enabled to detect early spatio-temporal

differences in the maturation progression of a set of
ain white matter: A review of imaging studies in fetuses, newborns and
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bundles, from the more to the less mature bundles: (1) the

CST, (2) the STT and the fornix, (3) the OR, the arcuate

and inferior longitudinal fascicles, (4) the ALIC and the

CG. In a similar way, three distinct phases of

maturation, with specific dynamics for each bundle type,

have been modeled and identified in the fetal WM

between 23 and 38 w GA: (i) the axonal organization,

(ii) the myelination gliosis, and (iii) the myelination,

which appears early in the CST, followed by the OR and

the CC (Zanin et al., 2011).

Regional asynchrony in WM maturation is also

observed by MTR, showing a relatively mature stage at

12.9 and 15.6 m in the occipital and frontal WM

respectively, and at 17.7 and 18.7 m in the splenium

and genu of CC (Xydis et al., 2006). The spatio-

temporal pattern of myelination progression is also

nicely demonstrated through MWF (Deoni et al., 2011,

2012a). It rises earlier in a frontal–parietal region

(projection fibers) than in an frontal region (association

fibers) during childhood, following the standard caudal-

to-rostral trend (Lancaster et al., 2003). In infants

between 3 and 11 months of age, MWF increases in the

cerebellum, pons, and internal capsule; it further

increases caudo-cranially from the splenium of the CC

and OR (at 3–4 months); to the occipital and parietal

lobes (at 4–6 months); and then to the genu of the CC

and frontal and temporal lobes (at 6–8 months) (Deoni

et al., 2011). The spatio-temporal pattern provided over

a larger age range (3–60 months) is coherent with

histological studies of myelination (Deoni et al., 2012a).
Maturation progression within a WM bundle. The

spatial resolution of DTI also allows to studying

maturation along a WM tract: maturation does not

evolve at the same time and speed in different spatial

locations within a bundle (Partridge et al., 2005; Colby

et al., 2012). During the first two post-natal years,

changes near cortical regions generally appear smaller

than in brain central regions (Geng et al., 2012). In

preterm newborns between 28 and 43 w GA, the motor

tract and the somatosensory radiations of the CST

begin to myelinate during the late preterm period first at

the level of the internal capsule (Berman et al., 2005).

Maturation further seems to proceed earlier in the motor

pathway than in the sensory one at the vertex where

motor fibers initiate from the cortex. From term-

equivalent age (Berman et al., 2005; Geng et al., 2012),

the anisotropy profile presents a local dip at the level of

the corona radiata, which suggests the beginning and

ongoing maturation of crossing pathways (fibers of the

CC and superior longitudinal fasciculus).

The myelination progression in the visual pathways of

infants between 6 and 17 weeks of post-natal age has

also been studied, showing two asynchronous fronts of

maturation in the OR: an early wave in the anterior

region, initiating from the lateral geniculate nucleus, and

a later catching-up wave in the posterior region,

initiating from the occipital cortex (Dubois et al., 2008c).

According to the assumption that myelination proceeds

from the neuron body to the periphery (McCart and

Henry, 1994), this pattern may result from the
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respective myelination of the geniculo-cortical

(projection) fibers and cortico-geniculate (feedback)

fibers, with a delayed maturation of the cortical

retrocontrol to the thalamus relative to bottom-up fibers.

Sophisticated approaches to map WM maturation
asynchrony

Recently, original approaches that combine MRI

parameters have been proposed to measure even more

precisely the maturation across WM regions.

Correlations between MRI parameters. The different

parameters (T1, T2, DTI, MTR, MWF) capture different

properties of WM maturation (Fig. 4c). Some studies

have described specific correlations between them, but

most have missed to take into account their major age-

related dependencies.

In neonates, a strong correlation has been detected

between relaxation rates R1 (1/T1) and R2 (1/T2)

among different WM regions (Williams et al., 2005)

(Fig. 6a). In the kitten WM, DTI mean diffusivity seems

to correlate more with R2 than with R1 (Baratti et al.,

1999), whereas maps of mean diffusivity demonstrate a

pattern of regional variations similar to T1 maps in

preterm newborns between 26 and 45 w GA (Nossin-

Manor et al., 2012).

According to the inverse correlation between MTR

increase and T2 decrease in WM after term birth, it has

been assumed that both changes rely on fast proton

relaxation within macromolecules in myelinated tissue

(Engelbrecht et al., 1998). An inverse correlation

between MTR and T1 is observed in preterm newborns

near term (Nossin-Manor et al., 2012) (Fig. 6b). MTR is

also positively correlated with FA in WM during the

preterm period, suggesting a coupling between the

increase in concentration of pre-myelination-associated

macromolecules and the increase in axonal alignment

and axonal density (Nossin-Manor et al., 2012)

(Fig. 6b). The comparison of MWF measurements with

age-related dynamics of T1 (R1) and T2 (R2) relaxation

times (rates) has shown that all parameters are

sensitive to WM maturation in infants, but in different

ways suggesting that they provide complementary

information on maturation processes (Lancaster et al.,

2003; Deoni et al., 2012a) (Fig. 6c).

Since T1, T2, DTI, MTR and MWF maps show

regional variations following different evolutions with

age, these parameters are to be sensitive to multiple

and complementary mechanisms of WM development. It

is only by combining and comparing these parameters

that one can hope to outline comprehensive patterns of

the tissue macro- and microstructures. For instance, in

preterm infants the CC displays high values of MTR, T1,

FA and longitudinal diffusivity and low transverse

diffusivity values, because callosal fibers are highly

organized, closely packed, with high axonal density of

microstructural components (e.g. microtubules,

neurofilaments), leading to high directionality, coherence

and restriction, but the fibers are not myelinated and the

water content is high (Nossin-Manor et al., 2012). On

the other hand, the PLIC shows in the preterm period
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(pre-myelinating stage) low values of MTR, FA and

diffusivities and high T1 values, resulting from a lower

fiber packing density than in the CC, a lower

macromolecular density, along with lower directionality

and coherence but higher restriction; at term, the

increase in MTR values, along with lower transverse

diffusivity, are markers of the myelination process

(Nossin-Manor et al., 2012). Thus a clever use of these

different parameters, informed by a better understanding

of the mechanisms they are sensitive to, do provide

more precise in vivo maps of the WM maturation.
Multi-parametric imaging. Dealing with multi-

parametric data will open new perspectives in the

study of WM development. Combining the time

trajectories of anisotropy, longitudinal and transverse

diffusivities may definitely provide accurate landmarks

on maturation asynchrony across bundles (Sadeghi

et al., 2013). Modeling the information from structural

(T1w, T2w, PD images) and DTI data (longitudinal and

transverse diffusivities) with modified Legendre

polynomials has also provided an absolute measure of

maturation (rate of change) and a relative measure

(time shift) (Prastawa et al., 2010). Maps of growth

rates demonstrate slow regions (e.g. internal capsule)

and rapidly growing regions (e.g. deep WM in anterior

and posterior regions, temporal lobe). Maps of time

shifts based on structural data demonstrate gradual

changes in regions that undergo myelination, while

surprisingly those based on DTI data mostly highlight

differences between central and peripheral regions

(Prastawa et al., 2010).

DTI parameters may also be combined with

quantitative relaxation times T1 and T2. Because of the

complex relations between these parameters in

developing bundles (Kulikova et al., 2013a), an original

measure of maturation has been defined in infants

between 3 and 21 weeks of post-natal age to

summarize the changes in all parameters while taking

into account their possible correlations. This measure,

based on the computation of the Mahalanobis distance

in comparison with a group of adults, confirms the

evidence of WM maturation asynchrony over a short

developmental period and outperforms univariate

approaches (Kulikova et al., 2013b). It further provides a

quantitative evaluation in weeks of the developmental

delays between WM bundles. The maturation order

provided by this multi-parametric approach during the

first post-natal year is congruent with the, from the most

to the least mature bundle: the STT; the OR; 6 weeks

later: the middle portion of the CST and the fornix;

12 weeks later: the inferior portion of the CST; 7 weeks

later: the genu and splenium of the CC and the superior

portion of the CST; 6 weeks later: the inferior CG;

3 weeks later: the CC body and the superior CG;

3 weeks later: the inferior longitudinal, fronto-occipital

and uncinate fascicles; 2 weeks later: the EC; 3 weeks

later: the ALIC; 4 weeks later: the superior longitudinal

and arcuate fascicles literature (Kulikova et al., in

preparation).
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FUNCTIONAL CORRELATES OF MRI
BIOMARKERS OF WM MATURATION

In healthy infants, WM maturation correlates with psycho-

motor acquisitions (Prayer and Prayer, 2003) but the

exact relationships between cerebral structure and

function remain difficult to grasp. Brain anatomical

analyses might help to understand the biological bases

of cognitive development, by revealing the early

structural specificities that may underlie human complex

functions such as language, and by mapping

correlations between structural indices and functional

efficiency. WM studies are also crucial to understand

early functional impairments such as the ones triggered

by preterm birth.
Early WM asymmetries in highly lateralized functional
networks

Finding which hemisphere is the left one on an axial

image of an adult human brain is usually relatively easy

thanks to the Yakovlev torque creating right frontal and

left occipital petalias, and a steeper and shorter right

sylvian fissure (Toga and Thompson, 2003). Some of

the structural asymmetries observed in the peri-sylvian

regions (Heschl gyrus, planum temporale, superior

temporal sulcus (STS)) have been described during the

early brain development of fetuses and preterm

newborns (Chi et al., 1977; Feess-Higgins and Laroche,

1987; Dubois et al., 2008a, 2010a). Other asymmetries

evolve later on during development: for instance the

posterior extension of the sylvian fissure progresses

until adolescence and adulthood (Sowell et al., 2002). At

the functional level, the left-hemisphere specialization

for language processing is observed early on in infants

(Dehaene-Lambertz et al., 2002, 2006) and already at

6 months of gestation (Mahmoudzadeh et al., 2013),

and the lateralization of the somato-sensory response is

also detected at birth (Erberich et al., 2006). The origins

and relationships between these early anatomical and

functional asymmetries are still debated.

Using DTI in healthy infants, three WM regions have

been shown asymmetric early on (Dubois et al., 2009):

(1) the temporal part of the AF is larger on the left; (2)

its left parietal part shows a better microscopic

organization than the right; (3) the CST is more mature

in the left hemisphere between the cerebral peduncles

and the PLIC. These two bundles have also been

shown asymmetric in preterm infants at term-equivalent

age (Liu et al., 2010) and in adults (Buchel et al., 2004;

Parker et al., 2005). Since these WM pathways are

related to language and motor networks, such early

structural asymmetries might be biomarkers of the

genetic constraints driving development of lateralized

functions in the human brain, although no strict

correlation has been found between asymmetries of the

motor pathways and later handedness.

Myelin content is also asymmetrical in multiple WM

regions, with no significant change over time during

infancy (O’Muircheartaigh et al., 2013): toward the left

hemisphere in the temporal/occipital lobe on the

trajectory of the arcuate and inferior longitudinal
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fascicles, in the medial frontal and posterior parietal lobes;

toward the right hemisphere in the dorsal external/

extreme capsule and in central WM. Furthermore,

language ability correlates with MWF rightward

asymmetry in the external/extreme capsule and with

MWF leftward asymmetry in frontal WM, and such

relationships seem to stabilize around 4 years of age

(O’Muircheartaigh et al., 2013).
Correlations between DTI parameters and functional
measurements

The key question that encourages further in vivo MRI

studies of the developing brain is to which extent

advanced structural imaging provides biomarkers of the

sensori-motor and cognitive development of infants. In

the developing language network, the time course of

WM myelination parallels language acquisition, with

lexical explosion after 18 months of age (Pujol et al.,

2006; Su et al., 2008). Similar relationships have been

highlighted in 12-month-old infants, where visuospatial

working memory performance correlated with DTI

microstructural characteristics of WM tracts connecting

brain regions known to be involved in working memory

(genu of the CC, anterior and superior thalamic

radiations, anterior CG, AF), beyond individual

variations in age and developmental level (Short et al.,

2013).

Structure–function correlations can also be

highlighted by comparing MRI parameters with

neurophysiological measures. In the visual system

during the first post-natal months, several maturation

processes (e.g. fiber myelination, retina and cortex

development) lead to a dramatic decrease of the latency

of the first response wave to a visual stimulus (P1) as

measured by event-related potentials, from about

260 ms at birth to about 120 ms at 4 months of age

(McCulloch et al., 1999). This decrease is related to an

increase in the conduction speed of the neural impulse,

which is correlated to the OR microstructure and

maturation (FA and transverse diffusivity) beyond the

effect of age (Dubois et al., 2008c). This correlation

study of EEG and DTI measurements (obtained in the

same infants) outlines the functional significance of

structural markers during WM maturation. The ability to

characterize individual anatomical and functional

differences across infants is very promising for the

understanding of normal development with special focus

on experience-dependent mechanisms and critical

periods of plasticity. It is also crucial for the definition of

biomarkers that will characterize and detect early

perturbations of developmental trajectories.
Functional correlates of MRI biomarkers in preterm
newborns

Based on the results obtained in healthy infants, early

biomarkers of neurological deficits are searched for,

especially in the case of premature birth. The early

organization and maturation of axonal pathways is a

highly vulnerable process during the second half of

pregnancy (Kostovic and Jovanov-Milosevic, 2006). In
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infants born prematurely, brain growth is disturbed by

the change from in utero to ex utero environment, and

the difficulties to maintain a stable homeostasis. But

whereas the neurodevelopmental disabilities of children

born prematurely are now rather well described, the

underlying alterations of brain development (that lead to

disabilities) remain poorly understood (Ment et al., 2009).
Early impairments in WM development. MRI studies

might provide early biomarkers of functional outcome

and of specific disturbances of cognitive development.

While several reviews have detailed WM abnormalities

related to prematurity (periventricular leucomalacia,

punctate lesions, diffuse excessive high signal intensity

(DEHSI)) and their long-term effects on the child brain

(for example (Ment et al., 2009; Rutherford et al., 2010),

we here summarize only major findings observed in

preterm infants without gross brain lesions and imaged

below 2 years of age.

The impact of prematurity on WM development has

been mainly evaluated by comparing preterms at term-

equivalent age with full-term infants. Preterm infants

present with less GM/WM differentiation and myelination

in comparison with full-term newborns (Huppi et al.,

1996; Mewes et al., 2006). The macrostructure of the

CC is impaired, with reduced volume correlating with

lower GA at birth (Thompson et al., 2012). Using voxel-

based analyses (Rose et al., 2008) or tract-based

spatial statistics (TBSS) (Anjari et al., 2007), FA

reductions were found in several WM regions (CS,

frontal WM, CC, internal and ECs), but higher FA

associated with lower T2 values were also observed in

cortico-spinal projections, suggesting a decreased

number of crossing inter-hemispheric fibers associated

with a decreased water concentration (Rose et al., 2008).

BesideWM, thalamic development is also dramatically

disrupted by prematurity, with reduced volume related to

abnormalities in ‘‘allied’’ WM structures (CSTs and CC) at

term-equivalent age (Ball et al., 2012b). The thalamo-

cortical loop seems highly vulnerable, with diminished

connections between the thalamus and frontal cortices,

supplementary motor areas, occipital lobe and temporal

gyri in preterm infants (Ball et al., 2012a). Prematurity is

also related to widespread reductions in the connection

strength of WM tracts involving all cortical lobes and

several subcortical structures during the second post-

natal year (Pandit et al., 2013).
Correlations with behavioral measures. Local

reductions in WM volumes at term-equivalent age in the

sensorimotor and mid-temporal regions are strongly

correlated with measures of cognitive and motor

development between 18 and 20 months of corrected

age (Peterson et al., 2003). In the absence of apparent

WM lesions, higher mean diffusivity values at the level

of the CS at term-equivalent age have been associated

with poorer developmental quotient on the Griffiths

Mental Development Scales at 2 years of corrected age

(Krishnan et al., 2007). Similarly, a TBSS analysis has

shown that developmental quotient at 2 years corrected

age is related to FA in subparts of the CC at
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.044

http://dx.doi.org/10.1016/j.neuroscience.2013.12.044


Fig. 7. General time-line of WM development. The time-courses of developmental mechanisms are tentatively summarized across WM bundles,

according to post-mortem investigations and MRI studies. These mechanisms include the growth, pruning and myelination of axonal fibers, during

the pre-term and post-term periods (fetal and post-natal ages in weeks). For each mechanism, approximate time periods are indicated. To our

knowledge, information on the beginning and ending of axonal pruning are missing in the human brain. Purple-bordered arrows refer to the

myelination process. Abbreviations: AF, arcuate fasciculus; ALIC, anterior limb of the internal capsule; CC, corpus callosum; CG, cingulum; CR,

corona radiate; CST, cortico-spinal tract; EC, external capsule; FOF, fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; PLIC, posterior

limb of the internal capsule; OR, optic radiations; SLF, superior longitudinal fasciculus; STT, spino-thalamic tract; UF, uncinate fasciculus. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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term-equivalent age; performance sub-scores to FA in the

CC and right CG; and eye-hand coordination sub-scores

to FA in the CG, fornix, anterior commissure, CC and

right uncinate fasciculus (UF) (Counsell et al., 2008).
Focus on the developing visual system. Three studies

have focused on the early development of the visual

system in preterm infants, because this function

matures early on and is frequently impaired by

premature birth. Between 29 and 41 w GA, the

microstructural development (FA) of the OR has been

correlated with the newborn visual maturity (scores from

a visual fixation tracking assessment) independently of

GA (Berman et al., 2009). This has been confirmed at

term-equivalent age, with a specific correlation between

the visual assessment score and the FA in the OR,

independently from GA at birth, GA at scan or presence

of lesions on conventional MRI (Bassi et al., 2008). A

recent study has further evidenced an effect of the

period of premature extra-uterine life in addition to the

degree of prematurity: indeed, visual function around

term-equivalent age seems related to FA in the OR at

that age, but also to FA evolution pattern, as

characterized by the rate of increase between two

successive scans (the first between 30 and 36 w GA,

the second at term-equivalent age between 39 and 46 w

GA) (Groppo et al., 2012). The alteration of WM
Please cite this article in press as: Dubois J et al. The early development of br
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pathways microstructural maturation during the late

preterm period thus impacts the visual function at birth.
CONCLUSION

Characterizing the dynamics of human brain development

and the structural bases of functional maturation requires

in vivo studies of the healthy newborn and infant. These

studies are challenging and require dedicated

methodologies for image acquisition and post-

processing. But it is worth the effort since new

quantitative markers of maturation have been recently

validated, also providing a better understanding of the

deleterious effects of early disturbances such as

prematurity.

Mechanisms of WM development are complex and

intermingled. In terms of early WM organization, the

growth and wiring of axonal fibers occur mostly during

the preterm period, whereas the pruning of aberrant or

useless connections rather starts during the first post-

natal weeks along with external stimulations. Afterward,

fibers get myelinated and progressively functionally

mature, which may result from neuronal activity and

also reinforce it. WM maturation further impacts on the

functional efficiency of brain networks, which correlates

with the infant acquisitions. All these mechanisms occur

at different times and speeds according to cerebral
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regions and involved functions, with maturation

proceeding until adulthood in some associative frontal

and temporal regions. A tentative summary of the time-

line of WM development during the preterm period and

the first post-natal months can be provided from post-

mortem investigations and in vivo MRI studies (Fig. 7).

Although relatively coherent, some variations in the time

courses are observed because the techniques are

differently sensitive to mechanisms of WM organization

and maturation. Let us keep in mind that MRI

techniques remain indirect and macroscopic approaches

to explore the developing microstructure. They can

hardly investigate some mechanisms (e.g. fiber

pruning), but their main advantage is to be non-invasive

techniques that can be applied in vivo in healthy fetuses

and infants. For instance, they are the only conceivable

approach to investigate how brain maturation is

influenced early on by environmental factors and

nutrition (e.g. boosting of WM myelination by

breastfeeding (Deoni et al., 2013)).

Other emerging MRI techniques, such as magnetic

susceptibility mapping and phase imaging, are

promising to help characterize the microstructural

properties of the developing WM (Zhong et al., 2011;

Lodygensky et al., 2012; Chen et al., 2013). Of course,

WM changes are not completed by 2 years of age, but

are protracted in some brain regions until the end of

adolescence; however it is beyond the scope of the

current article to review all existing studies based on

structural MRI (Paus et al., 1999, 2001; Paus, 2005,

2010; Giedd and Rapoport, 2010) and DTI (Barnea-

Goraly et al., 2005; Eluvathingal et al., 2007; Lebel

et al., 2008; Faria et al., 2010; Lebel and Beaulieu,

2011). Finally, the interactions between the developing

WM connectivity and the development of cortical

regions will probably take a place of honor soon, since

an increasing number of studies have recently provided

early quantitative markers of cortical maturation (Leroy

et al., 2011a), that may also correlate with the

development of infant cognitive abilities (Aeby et al.,

2013; Travis et al., 2013).

To sum, correlation approaches based on

complementary imaging approaches (including

anatomical and functional imaging and behavioral

assessments) enable to explore the developing brain at

several levels, from brain structure development to the

infant motor and cognitive acquisitions. Beyond normal

development, these studies are crucial to understand

the mechanisms of pathologies that result from early

cerebral anomalies (e.g. genetic diseases, epilepsies,

mental retardation, learning disorders), to assess the

influence of early disturbances related to fetal conditions

(e.g. intra-uterine growth restriction, teratogen

exposures) or perinatal events (e.g. premature birth,

neonatal stroke), and to follow the efficiency and

robustness of medical interventions.
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